Quantum Physics


Proposed Experiments to Test the Foundations of Quantum Computing

Authors: Alan M. Kadin, Steven B. Kaplan

Quantum computing promises computational performance that is exponentially faster than any conceivable classical computer. This is due to the theoretically expected scaling of N entangled qubits, with parallel evolution of 2^N quantum states. This is in sharp contrast to classical computing, where N bits may have 2^N classical states, but only one at a time. It is widely believed that quantum superposition and entanglement have been demonstrated in several experimental systems, and that practical quantum computing can be achieved once sufficiently long quantum relaxation times are obtained. On the contrary, we suggest that there may be serious problems with quantum computing on both the macroscopic and microscopic levels, and that the experiments thus far have not proven the existence of non-classical superposition states, which are necessary for the proper functioning of qubits. In order to investigate this further, we propose new experiments in three physical systems: electron spins, single photons, and superconducting loops. We further suggest that certain more limited classes of quantum computing, such as quantum annealing, do not require quantum entanglement, and can achieve significant performance enhancements even if universal quantum computing proves to be impossible.

Comments: 8 Pages. Submitted to International Conference on Rebooting Computing June 2016, to be held in San Diego CA, Oct. 2016

Download: PDF

Submission history

[v1] 2016-07-08 20:43:00

Unique-IP document downloads: 88 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus