Artificial Intelligence

   

Indian Buffet Process Deep Generative Models

Authors: Sotirios P. Chatzis

Deep generative models (DGMs) have brought about a major breakthrough, as well as renewed interest, in generative latent variable models. However, an issue current DGM formulations do not address concerns the data-driven inference of the number of latent features needed to represent the observed data. Traditional linear formulations allow for addressing this issue by resorting to tools from the field of nonparametric statistics: Indeed, nonparametric linear latent variable models, obtained by appropriate imposition of Indian Buffet Process (IBP) priors, have been extensively studied by the machine learning community; inference for such models can been performed either via exact sampling or via approximate variational techniques. Based on this inspiration, in this paper we examine whether similar ideas from the field of Bayesian nonparametrics can be utilized in the context of modern DGMs in order to address the latent variable dimensionality inference problem. To this end, we propose a novel DGM formulation, based on the imposition of an IBP prior. We devise an efficient Black-Box Variational inference algorithm for our model, and exhibit its efficacy in a number of semi-supervised classification experiments. In all cases, we use popular benchmark datasets, and compare to state-of-the-art DGMs.

Comments: 16 Pages.

Download: PDF

Submission history

[v1] 2016-07-07 02:49:14
[v2] 2016-07-07 07:08:00
[v3] 2016-07-07 08:09:10
[v4] 2016-07-07 10:41:19
[v5] 2016-07-08 03:07:07
[v6] 2016-07-08 06:55:14

Unique-IP document downloads: 165 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus