Digital Signal Processing


Electromagnetic Force Modification in Fault Current Limiters under Short-Circuit Condition Using Distributed Winding Configuration

Authors: Asef Ghabeli, Mohammad Reza Besmiy

The electromagnetic forces caused by short-circuits consisting of radial and axial forces impose mechanical damages and failures to the windings. The engineers have tried to decrease these forces using dierent techniques and innovations. Utilization of various kinds of winding arrangements is one of these methods, which enable the transformers and fault current limiters to tolerate higher forces without a substantial increase in construction and fabrication costs. In this paper, a distributed winding arrangement is investigated in terms of axial and radial forces during short-circuit condition in a three-phase FCL. To calculate the force magnitudes of AC and DC supplied windings, a model based on the nite element method in time stepping procedure is employed. The three-phase AC and DC supplied windings are split into multiple sections for more accuracy in calculating the forces. The simulation results are compared with a conventional winding arrangement in terms of leakage ux and radial and axial force magnitudes. The comparisons show that the distributed winding arrangement mitigates radial and especially axial force magnitudes signicantly.

Comments: 17 Pages.

Download: PDF

Submission history

[v1] 2016-05-20 23:27:18

Unique-IP document downloads: 248 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus