The Haber Process Made Efficient by Hydroxylated Graphene Authors: Vitaly Chaban, Oleg Prezhdo

Authors: Vitaly Chaban, Oleg Prezhdo

The Haber-Bosch process is the main industrial method for producing ammonia from diatomic nitrogen and hydrogen. Very demanding energetically, it uses an iron catalyst, and requires high temperature and pressure. Any improvement of the Haber process will have an extreme scientific and economic impact. We report a significant increase of ammonia production using hydroxylated graphene. Exploiting the polarity difference between N2/H2 and NH3, as well as the universal proton acceptor behavior of NH3, we demonstrate a strong shift of the equilibrium of the Haber-Bosch process towards ammonia. Hydroxylated graphene provides the polar environment favoring the forward reaction, and remain stable under the investigated thermodynamic conditions. Ca. 50 kJ mol-1 enthalpy gain and ca. 60-70 kJ mol-1 free energy gain are achieved at 298 1300 K and 1 1000 bar, strongly shifting the reaction equilibrium towards the product. A clear microscopic interpretation of the observed phenomenon is given using electronic structure calculations and real-time reactive simulations. The demonstrated principle can be applied with many polar groups functionalizing a substrate with a high surface area, provided that the system is chemically inert to H2, N2 and NH3. The modified Haber-Bosch process is of significant importance to the chemical industry, since it provides a substantial increase of the reaction yield while decreasing the temperature and pressure, thereby, reducing the cost.

Comments: 14 Pages.

Download: PDF

Submission history

[v1] 2016-03-25 11:58:59
[v2] 2016-03-25 16:51:37

Unique-IP document downloads: 297 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus