Artificial Intelligence

   

Conditional Deng Entropy, Joint Deng Entropy and Generalized Mutual Information

Authors: Haoyang Zheng, Yong Deng

Shannon entropy, conditional entropy, joint entropy and mutual information, can estimate the chaotic level of information. However, these methods could only handle certain situations. Based on Deng entropy, this paper introduces multiple new entropy to estimate entropy under multiple interactive uncertain information: conditional Deng entropy is used to calculate entropy under conditional basic belief assignment; joint Deng entropy could calculate entropy by applying joint basic belief assignment distribution; generalized mutual information is applied to estimate the uncertainty of information under knowing another information. Numerical examples are used for illustrating the function of new entropy in the end.

Comments: 16 Pages.

Download: PDF

Submission history

[v1] 2016-03-23 10:04:45

Unique-IP document downloads: 61 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus