Condensed Matter

   

Fundamental of Rate Theory for CMNS

Authors: Akito Takahashi

The condensed matter nuclear reactions (CMNR) are thought to happen for trapped H(D) particles within some chemical (electro-magnetic) potential well with finite life time. As the life time is much longer than the collision time of two-body interaction of free particles, CMNR reaction rates are significantly (on the order of 19-20 in magnitude) enhanced if we compare with estimated reactions rates by the two-body collision formula. The basis of CMNR rate theory is reviewed in this paper by extracting essence of the TSC theory tools developed until now. Derivation of Fermi’s golden rule with nuclear optical potential, rate formulas by Born-Oppenheimer wave function separation, estimation of bracket integral of inter-nuclear strong interaction rate, estimation of time dependent barrier penetration probability by the HMEQPET method for dynamic D(H)-cluster condensation/collapse process, and DD fusion power levels as functions of inter-nuclear d-d distance and effective existing (life) time are given. A DD fusion power level of 10 kW/mol-dd-pairs is possible for a 1 pm inter-nuclear d-d distance with 10 ato-seconds life time. The level of 2.8 nano-mol 4D/TSC formations/sec may release 10 kW neutron-free heat-power with 4He ash.

Comments: 19 Pages. Preprint of ICCF19 Proceedings paper, to be published by J. Condensed Matter Nucl. Sci.

Download: PDF

Submission history

[v1] 2015-04-23 23:26:34

Unique-IP document downloads: 254 times

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus