## Smallest Symmetric Supergroups Of the Abstract Groups Up to Order 37

**Authors:** Richard J. Mathar

Each finite group is a subgroup of some symmetric group, known as the Cayley theorem.
We find the symmetric group of smallest order which hosts the finite groups
in that sense for
most groups of order less than 37.
For each of these small groups this is made concrete by providing a permutation group
with a minimum number of moved elements in terms of a list of generators
of the permutation group in reduced cycle notation.

**Comments:** 18 Pages.

**Download:** **PDF**

### Submission history

[v1] 2015-04-03 18:57:03

**Unique-IP document downloads:** 53 times

**Add your own feedback and questions here:**

*You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.*

*
*