Statistics

   

Distribution‑free Multiple Imputation in Incomplete Two‑way Tables

Authors: Sergio Arciniegas-Alarcón, Carlos Tadeu dos Santos Dias, Marisol García-Peña

Abstract – The objective of this work was to propose a new distribution‑free multiple imputation algorithm, through modifications of the simple imputation method recently developed by Yan in order to circumvent the problem of unbalanced experiments. The method uses the singular value decomposition of a matrix and was tested using simulations based on two complete matrices of real data, obtained from eucalyptus and sugarcane trials, with values deleted randomly at different percentages. The quality of the imputations was evaluated by a measure of overall accuracy that combines the variance between imputations and their mean square deviations in relation to the deleted values. The best alternative for multiple imputation is a multiplicative model that includes weights near to 1 for the eigenvalues calculated with the decomposition. The proposed methodology does not depend on distributional or structural assumptions and does not have any restriction regarding the pattern or the mechanism of the missing data.

Comments: 9 Pages. Paper in portuguese with abstract in english.

Download: PDF

Submission history

[v1] 2014-10-21 11:16:26

Unique-IP document downloads: 58 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus