Quantum Physics

   

Simplified Path Integral Approach to the Aharonov-Bohm Effect

Authors: William O. Straub

In classical electrodynamics the vacuum is defined as a region where there are no electric or magnetic fields. In such a region, a charged particle (such as an electron) will feel no effect — the Lorentz force is zero. The space external to a perfect (i.e., infinite) solenoid can be considered an electromagnetic vacuum, since E and B vanish there. While a non-zero vector potential A does exist outside the solenoid, it can exert no influence on the particle, and thus cannot be directly detected or quantified classically. However, in 1959 Aharonov and Bohm predicted that a vector field would exert a purely quantum-mechanical effect on the phase of the particle’s wave function, which in principle should be detectable. The predicted phase shift was not observed experimentally until 1986, when Tonomura brilliantly verified the effect using a microscopic solenoid. This paper provides a simplified explanation of the Aharonov-Bohm effect using a path-integral approach that is suitable for the advanced undergraduate.

Comments: 6 Pages.

Download: PDF

Submission history

[v1] 2014-03-27 12:09:57

Unique-IP document downloads: 790 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus