Number Theory


A Proof of the Lonely Runner Conjecture for Any n, with Rational Values Approximating Any Set of Arbitrary Integers with Infinite Precision

Authors: Patrick A Devlin

In number theory, and especially the study of the diophantine approximation, the Lonely Runner Conjecture is a conjecture with important and widespread applications in mathematics. A previous paper by this author proved the lonely runner conjecture for any n, for the special case of integers with particularly correlated prime factors. In this paper we attempt to extend this work to the general case of n arbitrary integers. The paper demonstrates that a set of integers with correctly correlated prime factors, such that they satisfy the conjecture, can be modified to approximate any set of arbitrary integers with infinite precision.

Comments: 17 Pages.

Download: PDF

Submission history

[v1] 2012-10-25 06:02:32
[v2] 2012-10-25 10:11:22

Unique-IP document downloads: 197 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus