## Quaternionic-valued Gravitation in 8D, Grand Unification and Finsler Geometry

**Authors:** Carlos Castro

A unification model of 4D gravity and SU(3) x SU(2) x U(1) Yang-Mills theory is presented. It is obtained from a Kaluza-Klein compactification of 8D quaternionic gravity on an internal CP^2 = SU (3)/U(2) symmetric space . We proceed to explore
the nonlinear connection A^a_\mu ( x, y ) formalism used in Finsler geometry to show how ordinary gravity in D = 4 + 2 dimensions has enough degrees of freedom to encode a 4D gravitational and SU (5) Yang-Mills theory. This occurs when the internal two-dim space is a sphere S^2 . This is an appealing result because SU (5) is one of the candidate GUT groups. We conclude by discussing how the nonlinear connection formalism of Finsler geometry provides an infinite hierarchical extension of the Standard Model within a six dimensional gravitational theory due to
the embedding of SU (3) x SU (2) x U(1) \subset SU ( 5 ) \subset SU ( \infty ) .

**Comments:** 15 Pages. Submitted to the Int. Jour. of Theor. Physics

**Download:** **PDF**

### Submission history

[v1] 2012-03-18 02:07:39

**Unique-IP document downloads:** 110 times

**Add your own feedback and questions here:**

*You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.*

*
*