A Generalization of Stokes Theorem on Combinatorial Manifolds

Authors: Linfan Mao

For an integer m > 1, a combinatorial manifold fM is defined to be a geometrical object fM such that for(...) there is a local chart (see paper) where Bnij is an nij -ball for integers 1 < j < s(p) < m. Integral theory on these smoothly combinatorial manifolds are introduced. Some classical results, such as those of Stokes' theorem and Gauss' theorem are generalized to smoothly combinatorial manifolds in this paper.

Comments: 16 pages

Download: PDF

Submission history

[v1] 19 Apr 2011

Unique-IP document downloads: 43 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus