High Energy Particle Physics

   

Global-Local Gauge Symmetries and the "Tetrahedron Model": Postscript

Authors: John A. Gowan

Global symmetries are those that apply everywhere, and for all time, such as the electric charge, mass, and spin of an elementary particle. This is a symmetry only because all electrons (for example) everywhere and always have exactly the same electric charge, mass, and spin - any electron could be swapped with any other without causing the least disturbance to the universe. Other global symmetries include the value of the universal electromagnetic constant "velocity c", the value of the universal gravitational constant "G", the value of Planck's energy quantum (h), among many others. These physical constants or physical global symmetries never change and are determined, fixed, set, or "gauged" at the beginning of the universe. They are the defining parameters of our universe, distinguishing it from any other in the "Multiverse". Local symmetries, on the other hand, involve actual changes in a single particle from one globally conserved symmetry state to another, as in the decay of a single neutron to a proton, electron, and electron anti-neutrino. In such a decay, all the original charges must reappear (in some form) in the product particles, and both the original and product particles must themselves be members of some global symmetry set or state. Finally, such locally gauged symmetry changes are, at least in principle, reversible given sufficient energy. Local gauge symmetry interactions involve post-"Big Bang" interactions between particles (or dimensions), and are mediated by the field vectors of the four forces of physics. They are the conserved interactions between particles (or the metric) that produce the common environment of our daily experience.

Comments: 8 Pages. part 3 of 3

Download: PDF

Submission history

[v1] 12 Apr 2011
[v2] 2013-01-07 17:41:15

Unique-IP document downloads: 123 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus