Number Theory


Counter to Zhou's Criticism of Jones' Proof of the Irrationality of π and π2

Authors: Tim Jones

A geometric proof of the irrationality of π is given. It uses an evaluation of the area given by the product of two symmetric functions, together with bounds on the integral. The symmetric functions embed the assumption of rational π; one function is dependent on n; as the evaluation of the integral exceeds the upper bound for large n for any given rational π, a contradiction is obtained. This proof has been criticized, but here some counters to the criticism are offered.

Comments: 5 pages

Download: PDF

Submission history

[v1] 6 Jan 2011

Unique-IP document downloads: 108 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus