Quantum Physics

   

A Causal Net Approach to Relativistic Quantum Mechanics

Authors: R.D. Bateson

In this paper we discuss a causal network approach to describing relativistic quantum mechanics where each vertex on a causal net represents a possible point event or particle observation. By constructing the simplest causal net based on Reichenbach-like conjunctive forks in proper time we can exactly derive the 1+1 dimension Dirac equation for a relativistic fermion and correctly model quantum mechanical statistics. Symmetries of the net provide various quantum mechanical effects such as quantum uncertainty and wavefunction, phase, spin, negative energy states and the effect of a potential. The causal net can be embedded in 3+1 dimensional space-time and is consistent with the conventional Dirac equation. In the low velocity limit the causal net approximates to the Schrödinger equation and Pauli equation for a fermion in an electromagnetic field. Extending to different momentum states the net is compatible with the Feynman path integral approach to quantum mechanics that allows calculation of well known quantum phenomena such as diffraction.

Comments: 19 pages.

Download: PDF

Submission history

[v1] 7 Jul 2010
[v2] 24 Jan 2011

Unique-IP document downloads: 398 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus