**Authors:** Steven Kenneth Kauffmann

It was pointed out in a previous paper that although neither the Klein-Gordon equation nor the Dirac Hamiltonian produces sound solitary free-particle relativistic quantum mechanics, the natural square-root relativistic Hamiltonian for a nonzero-mass free particle does achieve this. Failures of the Klein-Gordon and Dirac theories are reviewed: the solitary Dirac free particle has, inter alia, an invariant speed well in excess of c and staggering spontaneous Compton acceleration, but no pathologies whatsoever arise from the square-root relativistic Hamiltonian. Dirac's key misapprehension of the underlying four-vector character of the time-dependent, configuration-representation Schrödinger equation for a solitary particle is laid bare, as is the invalidity of the standard "proof" that the nonrelativistic limit of the Dirac equation is the Pauli equation. Lorentz boosts from the particle rest frame point uniquely to the square-root Hamiltonian, but these don't exist for a massless particle. Instead, Maxwell's equations are dissected in spatial Fourier transform to separate nondynamical longitudinal from dynamical transverse field degrees of freedom. Upon their decoupling in the absence of sources, the transverse field components are seen to obey two identical time-dependent Schrödinger equations (owing to two linear polarizations), which have the massless freeparticle diagonalized square-root Hamiltonian. Those fields are readily modfied to conform to the attributes of solitary-photon wave functions. The wave functions' relations to the potentials in radiation gauge are also worked out. The exercise is then repeated without the considerable benefit of the spatial Fourier transform.

**Comments:** 17 pages, Also archived as arXiv:1004.1820 [physics.gen-ph].

**Download:** **PDF**

[v1] 25 Apr 2010

**Unique-IP document downloads:** 393 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

**Add your own feedback and questions here:**

*You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful. *