Functions and Analysis

   

A Self-Recurrence Method for Generalizing Known Scientific Results

Authors: Florentin Smarandache

A great number of articles widen known scientific results (theorems, inequalities, math/physics/chemical etc. propositions, formulas), and this is due to a simple procedure, of which it is good to say a few words: Let suppose that we want to generalizes a known mathematical proposition P(a) , where a is a constant, to the proposition P(n) , where n is a variable which belongs to subset of N . To prove that P is true for n by recurrence means the following: the first step is trivial, since it is about the known result P(a) (and thus it was already verified before by other mathematicians!). To pass from P(n) to P(n + 1) , one uses too P(a) : therefore one widens a proposition by using the proposition itself, in other words the found generalization will be paradoxically proved with the help of the particular case from which one started! We present below the generalizations of Hölder, Minkovski, and respectively Tchebychev inequalities.

Comments: 7 pages

Download: PDF

Submission history

[v1] 6 Mar 2010
[v2] 20 Mar 2010

Unique-IP document downloads: 167 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus