Artificial Intelligence


On the Blackman's Association Problem

Authors: Jean Dezert, Florentin Smarandache, Albena Tchamova

Modern multitarget-multisensor tracking systems involve the development of reliable methods for the data association and the fusion of multiple sensor information, and more specifically the partioning of observations into tracks. This paper discusses and compares the application of Dempster-Shafer Theory (DST) and the Dezert-Smarandache Theory (DSmT) methods to the fusion of multiple sensor attributes for target identification purpose. We focus our attention on the paradoxical Blackman's association problem and propose several approaches to outperfom Blackman's solution. We clarify some preconceived ideas about the use of degree of conflict between sources as potential criterion for partitioning evidences.

Comments: 11 pages

Download: PDF

Submission history

[v1] 6 Mar 2010

Unique-IP document downloads: 85 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus