Classical Physics


A Derivation of Maxwell Equations in Quaternion Space

Authors: V. Christianto, Florentin Smarandache

Quaternion space and its respective Quaternion Relativity (it also may be called as Rotational Relativity) has been defined in a number of papers including [1], and it can be shown that this new theory is capable to describe relativistic motion in elegant and straightforward way. Nonetheless there are subsequent theoretical developments which remains an open question, for instance to derive Maxwell equations in Q-space. Therefore the purpose of the present paper is to derive a consistent description of Maxwell equations in Q-space. First we consider a simplified method similar to the Feynman's derivation of Maxwell equations from Lorentz force. And then we present another derivation method using Dirac decomposition, introduced by Gersten (1999). Further observation is of course recommended in order to refute or verify some implication of this proposition.

Comments: 6 pages

Download: PDF

Submission history

[v1] 5 Mar 2010
[v2] 6 Mar 2010

Unique-IP document downloads: 482 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus