Classical Physics


Prime Physis and the Mathematical Derivation of Basic Law

Authors: Constantinos Ragazas

In another paper we derived Planck's Law and showed that it is an exact mathematical identity that describes the interaction of energy. In that derivation the quantity, the 'accumulation of energy', played a prominent role. This quantity was defined as a time-integral of energy, while energy was the primary quantity. In this note we consider instead that this is the primary physical quantity (prime physis) and define in terms of it energy, momentum and force. From these we go on to mathematically derive such basic laws of Physics as Conservation of Energy and Momentum and Newton's Second Law of Motion. We also make promising connections with the Schrodinger Equation and derive a relationship between energy, mass and velocity. Underlying all this is the conviction that 'measurement' is what connects Mathematics with Physics. It's what makes mathematical derivations relevant to physics. If so, it should then be that all Basic Law of Physics are Mathematical Identities that describe the interactions of measurement. This we are able to show for Planck's Law, Conservation of Energy and Momentum, Newton's Second Law of Motion, and the Quantization of Energy Hypothesis.

Comments: 2 pages

Download: PDF

Submission history

[v1] 4 Feb 2010

Unique-IP document downloads: 636 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus