Quantum Physics


On a General Spin Dirac Equation

Authors: Golden Gadzirayi Nyambuya

In its bare and natural form, the Dirac Equation describes only spin-1/2 particles. The main purpose of this reading is to make a valid and justified mathematical modification to the Dirac Equation so that it describes any spin particle. We show that this mathematical modification is consistent with the Special Theory of Relativity (STR). We believe that the fact that this modification is consistent with the STR gives the present effort some physical justification that warrants further investigations. From the vantage point of unity, simplicity and beauty, it is natural to wonder why should there exist different equations to describe particles of different spins? For example, the Klein-Gordon equation describes spin-0 particles, while the Dirac Equation describes spin-1/2, and the Rarita-Schwinger Equation describes spin-3/2. Does it mean we have to look for another equation to describe spin-2 particles, and then spin-5/2 particles etc? This does not look beautiful, simple, or at the very least suggest a Unification of the Natural Laws. Beauty of a theory is not a physical principle but, one thing is clear to the searching mind - i.e., a theory that possesses beauty, appeals to the mind, and is (posteriori) bound to have something to do with physical reality if it naturally submits itself to the test of experience. The effort of the present reading is to make the attempt to find this equation.

Comments: 7 pages, Published in the Apeiron Journal, 2009, Vol. 4, pp.516-531: http://redshift.vif.com/JournalFiles/V16NO4PDF/V16N4NYA.pdf

Download: PDF

Submission history

[v1] 30 Oct 2009

Unique-IP document downloads: 1669 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus