Number Theory

   

The Riemann Hypothesis is a Consequence of CT-Invariant Quantum Mechanics

Authors: Carlos Castro

The Riemann's hypothesis (RH) states that the nontrivial zeros of the Riemann zeta-function are of the form sn = 1/2 + iλn. By constructing a continuous family of scaling-like operators involving the Gauss-Jacobi theta series and by invoking a novel CT-invariant Quantum Mechanics, involving a judicious charge conjugation C and time reversal T operation, we show why the Riemann Hypothesis is true. An infinite family of theta series and their Mellin transform leads to the same conclusions.

Comments: 17 pages, This article appeared in the Int. Jour. of Geom. Methods of Modern Physics vol 5, no. 1, February 2008

Download: PDF

Submission history

[v1] 26 Aug 2009

Unique-IP document downloads: 363 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus