Number Theory


Adjugates of Diophantine Quadruples

Authors: Philip Gibbs

Diophantine m-tuples with property D(n), for n an integer, are sets of m positive integers such that the product of any two of them plus n is a square. Triples and quadruples with this property can be classed as regular or irregular according to whether they satisfy certain polynomial identities. Given any such m-tuple, a symmetric integer matrix can be formed with the elements of the set placed in the diagonal and with corresponding roots off-diagonal. In the case of quadruples, Jacobi's theorem for the minors of the adjugate matrix can be used to show that up to eight new Diophantine quadruples can be formed from the adjugate matrices with various combinations of signs for the roots. We call these adjugate quadruples.

Comments: 7 pages. Published in INTEGERS 10 (2010), 201-209, (The Electronic Journal of Combinatorial Number Theory)

Download: PDF

Submission history

[v1] 20 Jul 2009

Unique-IP document downloads: 497 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus