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Abstract

We revisit the nonlinear Klein-Gordon-like equation that was proposed by us
which capture how quantum mechanical probability densities curve spacetime, and
find an exact solution that may appear to be “trivial” but with important physical
implications related to the physics of frozen stars and with Mach’s principle. The
nonlinear Klein-Gordon-like equation is essentially the static spherically symmetric
relativistic analog of the Newton-Schrödinger equation. We finalize by studying the
higher dimensional generalizations of the nonlinear Klein-Gordon-like equation and
examine the relativistic Bohm-Poisson equation as yet another equation capturing
the interplay between quantum mechanical probability densities and gravity.

1 Introduction

Rather than quantizing geometry (gravity), the geometrization of quantum mechanics, if
possible, is an appealing process. For instance, the emergence of quantum mechanics from
the fractal geometry of spacetime was advanced long ago by Nottale [1] in his formulation
of the scale relativity theory. Another approach in the interplay between gravity and
quantum mechanics has been based on the Newton-Schrödinger equation [2], [4]. It is
obtained by coupling the Schrödinger equation to the Poisson equation. The potential is
the gravitational potential determined by the Poisson equation associated to the matter
density, and which in turn, is proportional to the probability density corresponding to the
wave-function, ρ ∼ Ψ∗Ψ. The Newton-Schrödinger integro-differential equation is

ih̄
∂Ψ(r⃗, t)

∂t
= − h̄2

2m
∇2Ψ(r⃗, t) + V (r⃗, t) Ψ(r⃗, t) −

(
Gm2

∫ |Ψ(r⃗′, t)|2

|r⃗ − r⃗′|
d3r′

)
Ψ(r⃗, t)

(1)
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In [5] we found exact solutions to the stationary spherically symmetric Newton-
Schrödinger equation in terms of integrals involving generalized Gaussians. The energy
eigenvalues were also obtained in terms of these integrals which agree with the numerical
results in the literature.

The authors [3] have shown that the Schrödinger-Newton equation for spherically
symmetric gravitational fields can be derived in a WKB-like expansion from the Einstein-
Klein-Gordon, and Einstein-Dirac-Cartan system. The derivation amounts to assuming
the validity of the semi-classical Einstein equations Rµν − 1

2
gµνR = 8πG⟨Ψ|T̂µν |Ψ⟩. where

the left hand side is treated classically, but in the right hand side one is taking the
expectation value of the stress energy operator in the state |Ψ⟩.

There are two descriptions (interpretations) of the physical process underlying the
geometrization of QM. Both are based on the postulate that the quantum probability
density can curve the classical spacetime. One description is based in Feynman’s path
integral formulation of QM, where the ensemble of paths (fluid-like trajectories) associated
with a point-particle of mass Mo provides the probability density ρ (fluid-like density)
which curves the (classical) spacetime background in which the point particle moves.

A related example is in the study of Bohm’s formulation of QM, when Santamato [6]

found that Bohm’s quantum potential Q = − h̄2

2m

∇2√ρ√
ρ

was proportional to the spatial part

of the Weyl scalar curvature (in a flat spacetime)1 when the spatial components of the

Weyl’s gauge field of dilatations are pure gauge Ai ∼ ∂ln(ρ)
∂xi and where ρ is the ensemble

density associated with the particle’s paths.
The results of [6] were extended to the relativistic case with Aµ proportional to ∂ln(ϕ∗ϕ)

∂xµ ,
where ϕ(xµ) is a complex scalar field leading to the Klein-Gordon equation. Because Aµ

is a total derivative, the Weyl field strength is zero, Fµν = ∂µAν−∂νAµ = 0, which implies
that the rate of the ticking of clocks (in flat spacetime) will be independent of their paths
taken from point A to B. Consequently, atomic clocks arriving on the earth via different
trajectories will tick at the same rate (same spectral lines). In this fashion one can avoid
Einstein’s criticism of Weyl’s geometry. The extension of the results in [6] to the Dirac
equation and nonlinear quantum mechanics can be found in [7].

The other description (interpretation) underlying the geometrization of QM, and de-
scribed in this work, is based on the gravitational field produced by smearing a point
mass Mo at r = 0 throughout all of space (in an spherically symmetric fashion) . The
gravitational field is similar to the one generated by a self-gravitating anisotropic fluid
droplet of energy-mass density ρ = Moφ

∗(r)φ(r), and such that the latter energy-mass
density stems from the Quantum Mechanical probability amplitude φ(r) associated with a
spinless point-particle of mass Mo. The smearing process resembles a probability density
“cloud” φ∗(r)φ(r) permeating all of the 3-spatial region D3 =

∫∞
0 4πr2dr at a given time

t.
Classically one may smear the point mass in any way we wish leading to arbitrary

density configurations ρ(r). However, Quantum Mechanically this is not the case because
the radial mass configuration M(r) (which determines the density ρ(r)) must obey a key

1When the metric is flat the only contribution to the Weyl curvature stems from the Weyl gauge field
Aµ
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third order (in the spatial derivatives) nonlinear differential equation (nonlinear extension
of the Klein-Gordon equation) displayed in this work and which is the static spherically
symmetric relativistic analog of the Newton-Schrödinger equation.

The above-mentioned nonlinear Klein-Gordon-like equation was proposed in [20] but
no solutions were presented. In section 2 we shall find an exact solution for M(r) that
may appear to be “trivial” but with important physical implications related to the physics
of a frozen star [9] and with Mach’s principle [12].

It is important to mention that a nonlinear Klein-Gordon equation can result from
coupling a scalar field to gravity in cosmology. Assuming a homogeneous and isotropic
universe whose metric is given by the Friedmann-Robertson-Walker metric involving the
scaling factor a(t), and a scalar field solely dependent on time ϕ(t), and a potential V (ϕ),
the coupled system of equations provided by the Einstein field equations and the Klein-
Gordon like equation for ϕ(t) will furnish the solutions of the form a = a(t) and ϕ = ϕ(t).
Eliminating t from these two solutions yields the functional relation a = a(ϕ). If one
inserts this relation back into the Klein-Gordon like equation for ϕ one will automatically
generate a nonlinear equation for ϕ because the D’Alambertian operator 2 depends on
the metric, and in turn, on the scaling factor a = a(ϕ). As a sign of consistency, naturally,
the nonlinear Klein-Gordon like equation will be automatically satisfied when one plugs
in the solution ϕ = ϕ(t) found earlier when one solved the coupled system of equations.
In the most general case, having found solutions to the coupled system of field equations,
gµν(x

σ) and ϕ(xσ), it is much harder to infer the functional relationship between gµν and
ϕ that would have generated a nonlinear Klein-Gordon like equation for ϕ.

In section 3 we study the higher dimensional generalizations of the nonlinear Klein-
Gordon-like equations displayed in section 2 and examine the relativistic Bohm-Poisson
equation as yet another equation capturing the interplay between probability densities
and gravity.

2 A Solution to the Nonlinear Klein-Gordon Equa-

tion and Frozen Stars

Throughout this work we shall be employing the units h̄ = c = 1. In this section we
shall show how the quantum probability density can curve the classical spacetime and
find a solution to the nonlinear Klein-Gordon equation which is related to the physics
of frozen stars [9]. For simplicity, we focus on spherically symmetric static gravitational
backgrounds. Let us start with the Schwarzschild-like static spherically symmetric metric

(ds)2 = − (1− 2GM(r)

r
)(dt)2 + (1− 2GM(r)

r
)−1(dr)2 + r2(dΩ2)

2 (2)

based on a mass function M(r) representing the mass enclosed in a spherical region of
radius r. The metric (2) is not a solution of the vacuum field equations but instead is
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a solution to the Einstein field equations with sources Gµ
ν = 8πGT µ

ν . The stress energy
tensor is given by

T µ
ν ≡ diag (−ρ(r), pr(r), pθ(r), pφ(r)) (3)

and whose components turn out to be

ρ(r) = − pr(r) =
1

4πr2
dM(r)

dr
, pθ(r) = pφ(r) = − 1

8πr

d2M(r)

dr2
(4)

The conservation law ∇µT
µ
ν = 0, after laborious algebra gives

pθ = pϕ = − ρ − r

2

dρ

dr
(5)

which is consistent with (4).
To proceed next we shall follow very closely the construction of relativistic wave-

functions by [8] (not to be confused with second-quantized fields in Quantum Field The-
ory). If a one-particle wave function can be denoted by Ψ(xµ), it is natural to introduce
the spacetime scalar product

< Ψ|Ψ > =
∫
d4x Ψ∗(xµ) Ψ(xµ) (6)

and to normalize Ψ such that

1 =
∫
d4x Ψ∗(xµ) Ψ(xµ) (7)

The quantity
dP(4) = Ψ(xµ)∗ Ψ(xµ) d4x (8)

is naturally interpreted as probability that the particle will be found in the (infinitesimal)
spacetime 4-volume d4x.

If eq-(8) is the fundamental 4-probability, then

Ψ∗
(3)(x

µ) Ψ(3)(x
µ) =

Ψ∗(xµ) Ψ(xµ)

Nt

, Nt =
∫
d3x Ψ∗(xµ) Ψ(xµ) (9)

can be interpreted as the conditional 3-probability such that

dP(3) = Ψ(3)(x
µ)∗ Ψ(3)(x

µ) d3x (10)

is the probability that the particle will be found in the (infinitesimal) 3-volume d3x, in
the case one knows that the particle is detected at time t. Since Ψ(xµ) is normalized to
unity one can infer that Nt is also the marginal probability that the particle will be found
at time t over the whole 3-dimensional region Σt =

∫
d3x.

Having briefly introduced the relativistic wave function proposal by [8] let us focus
now in the case where Ψ can be decomposed (factorized) as

Ψ(xµ) = φ(x⃗) ξ(t) (11)

4



so that the 3-probability density

Ψ∗
(3)(x⃗) Ψ(3)(x⃗) =

φ∗(x⃗) φ(x⃗)∫
d3x φ∗(x⃗) φ(x⃗)

(12)

is independent on t and is automatically normalized to unity

1 =
∫
d3x Ψ∗

(3)(x⃗) Ψ(3)(x⃗) (13)

In the spherically symmetric case Ψ(xµ) = φ(r)ξ(t), the overall normalization condi-
tion must be unity

1 =
∫
d4x Ψ∗(r, t) Ψ(r, t) =

∫ ∞

0
φ∗(r) φ(r) 4πr2 dr

∫ ∞

0
ξ∗(t) ξ(t) dt (14)

reflecting the fact that the probability of detecting the particle anywhere in the whole of
3-space, and along its entire world-line history, has to be unity. Eq-(14) leads to the two
conditions

N =
∫ ∞

0
φ∗(r) φ(r) 4πr2 dr,

1

N
=

∫ ∞

0
ξ∗(t) ξ(t) dt (15)

We have taken the temporal domain’s range from t = 0 to t = ∞. One could have taken
it instead to range from t = −∞ (infinite past) to t = ∞ (infinite future) . But for now
we concentrate in the former case. Given the massM(r) enclosed in the spherical region
0 ≤ r′ ≤ r

M(φ(r)) = M(r) = Mo

∫ r

0
φ∗(r′) φ(r′) 4πr′2 dr′ (16)

the D’ Alambertian is given by

2 ≡ 1√
|g|
∂µ(

√
|g| gµν ∂ν), h̄ = c = 1 (17)

and the analog of the Klein-Gordon-like equation is

( 2 − Mo
2 ) Ψ(xµ) = 0 (18)

where, once again, Ψ(xµ) must not be confused with the second-quantized scalar field
Φ(xµ). Given the metric (2), the KG-like equation becomes

1

r2
∂r

(
r2 (1− 2GM(r)

r
) ξ(t) ∂rφ(r)

)
−

1

r2
∂t

(
r2 (1− 2GM(r)

r
)−1 φ(r) ∂tξ(t)

)
− M2

o φ(r) ξ(t) = 0 (19)

The differential equation (19) has the form

A(r) ξ(t) − B(r) ∂2t ξ(t) −M2
o φ(r) ξ(t) = 0 (20)
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separating the radial dependence from the temporal one yields an expression of the form

A(r) − M2
o φ(r)

B(r)
=

∂2t ξ(t)

ξ(t)
= λ (21)

since the left hand side solely depends on r, and the right hand side solely depends on t,
they have to be both equal to a constant λ. One then can solve for ξ(t)

ξ(t) = ξo e
t
√
λ (22)

Given the above solution for ξ(t) = ξo e
t
√
λ, it leads to the integro-differential equation

1

r2
∂r

(
r2 (1− 2GM(r)

r
) ∂rφ(r)

)
−

λ

r2

(
r2 (1− 2GM(r)

r
)−1 φ(r)

)
− M2

o φ(r) = 0 (23)

where the mass function M(φ(r)) =M(r) is defined in terms of φ(r) by the integral (16).
When φ(r) is real-valued φ∗(r) = φ(r), the above integro-differential equation (19)

can be converted into a nonlinear differential equation involving the mass functionM(r),
after expressing φ(r) in terms of M(r) via eq-(16), as follows

dM(r)

dr
=M ′(r) = 4πMor

2 φ∗(r) φ(r) = 4πMor
2 φ(r)2 ⇒ φ(r) = (

M ′(r)

4πMor2
)1/2 (24)

In this fashion, after writing φ(r) in terms ofM ′(r), one ends up with a complicated third
order nonlinear differential equation for the mass function M(r)

1

r2
∂r

(
r2 (1− 2GM(r)

r
) ∂r (

M ′(r)

4πMor2
)1/2

)
−

λ

r2

(
r2 (1− 2GM(r)

r
)−1 (

M ′(r)

4πMor2
)1/2

)
− M2

o (
M ′(r)

4πMor2
)1/2 = 0 (25)

Thus, eqs-(16,19) can be rewritten in terms of a single equation eq-(25) representing the
static spherically symmetric relativistic analog of the Newton-Schrödinger equation.

Suffice to say, to find non-trivial exact analytical solutions of the third order nonlinear
differential equation (25) for the mass function M(r) is very difficult. Nevertheless there
is an exact solution forM(r) that may appear to be “trivial” but with important physical
implications related to the physics of a frozen star [9] and with Mach’s principle [12]. We
will show that a solution for the mass function obeying eq-(25) is given by

M(r) =
κ

2G
r ⇒ ρ(r) =

κ

8πGr2
(26)

and the corresponding metric (2) becomes

(ds)2 = − (1− κ) (dt)2 + (1− κ)−1 (dr)2 + r2(dΩ2)
2 (27)
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where κ is a parameter whose range of values is chosen to be 0 < κ < 1. if κ > 1 there
will be a signature flip. If κ = 1 it leads to a degenerate metric. If κ < 0 it leads to
negative mass density. If κ = 0 it leads to a flat metric. Thus on physical grounds one
must have 0 < κ < 1.

Contrary to appearances the metric (27) is not flat. Given a 4D metric of the form

(ds)2 = − f(r) (dt)2 + f(r)−1 (dr)2 + r2(dΩ2)
2 (28)

the scalar curvature is

R = − d2f(r)

dr2
− 4

r

df

r
+

2

r2
(1− f(r)) (29)

When the metric function is f(r) = 1− 2GM
r

⇒ R = 0 as expected in the Schwarzschild
case. When f(r) = 1 − Λ

3
r2 ⇒ R = 4Λ as expected in the de Sitter (Anti de Sitter case

when Λ > 0 (Λ < 0), respectively.
One can verify that the metric (27) leads to a non vanishing R = 2κ

r2
. Another way of

showing why the metric (27) is not flat can be seen by performing a coordinate change
t→ t′ =

√
1− κt, r → r′ = r√

1−κ
and leading to

(ds)2 = − (dt′)2 + (dr′)2 + (1− κ) r′2(dΩ2)
2 (30)

one can see that the areal radius is no longer r′ but
√
1− κr′. Thus the area enclosed by

r′ is no longer given by the flat space result πr′2 but instead by (1− κ)πr′2.
It is a remarkable coincidence that the metric (27), when κ is less but very close to 1,

such that 1− κ = ϵ2, where ϵ is an extremely small parameter, corresponds to the metric
of what is called a frozen star [9]. The frozen star is a ultracompact object that, to
an external observer, looks exactly like a Schwarzschild black hole, but with a different
interior geometry and matter composition. The frozen star needs to be sourced by an
extremely anisotropic fluid, for which the sum of the radial pressure and energy density
is either vanishing or perturbatively small. Given M(r) = κ

2G
r one finds indeed that

ρ(r) = − pr(r) =
1

4πr2
dM(r)

dr
=

κ

8πGr2
⇒ ρ+ pr = 0 (31a)

pθ(r) = pφ(r) = − 1

8πr

d2M(r)

dr2
= 0 (31b)

which is consistent with the findings in [9]. As shown above, the scalar curvature R = 2κ
r2
,

and ρ, pr are singular at r = 0 so that a very small concentric sphere must be regularized
to ensure that these densities remain finite. This process was described in [10].

Also, as detailed in [9], a matching process is required near the outermost layer of the
star so that the frozen star metric and its corresponding stress tensor in eqs-(31) match
smoothly to the exterior Schwarzschild geometry. A salient feature of the maximally
negative radial pressure is that the frozen star model is able to evade the singularity
theorems of Hawking and Penrose [14]. For a finite value of 1− κ = ϵ2, a trapped surface
is never actually formed and having ρ + pr = 0 means that geodesics do not converge.
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Thus, the conditions under which the singularity theorems are valid are not satisfied by
the frozen star geometry [9]. The frozen star model differs from the gravastar model of
[11] which have a de Sitter like core in the interior and surface tension on the boundary.

After this detour discussing some of the properties of frozen stars, one finds that upon
inserting the solution M(r) = κ

2G
r into the third order nonlinear differential equation the

first term of eq-(25) vanishes due to ∂r(r
2∂r(

1
r
)) = 0, and one ends up with the last two

terms

λ (1− κ)−1 + M2
o = 0 ⇒ λ = − M2

o (1− κ) < 0 (32)

so that the temporal dependence is

ξ(t) = ξo e
t
√
λ = ξo e

±iMo
√
1−κt = ξo e

±iωt, ω =Mo

√
1− κ (33)

with 0 < κ < 1.
Given that M(r) = κ

2G
r, the radial part φ(r) ends up being

φ∗(r) = φ(r) = (
M ′(r)

4πMor2
)1/2 = (

κ

8πGMor2
)1/2 (34)

and, finally, a full solution for the relativistic wave-function obeying the nonlinear KG-like
equation is

Ψ(r, t) =

√
κ

8πGMo

ξo
r
e±iMo

√
1−κt, 0 < κ < 1 (35)

Ψ vanishes as r → ∞ as expected but it oscillates in time. However, the norm Ψ∗Ψ does
not depend on time and one has then found a stationary solution.

Normalization Conditions and Mach’s Principle

Going back to the normalization conditions of eqs-(15) one finds

N =
∫ ∞

0
φ∗(r) φ(r) 4πr2 dr =

κ

2GMo

∫ ∞

o
dr = ∞ (36)

so N diverges. To remedy this one could introduce an infrared cut-off determined by the
Hubble radius RH such that

N =
κRH

2GMo

=
κ

2

RH

LP

MP

Mo

, G = L2
P (37)

and where LP ,MP are the Planck length and mass, respectively. Introducing an infrared
cut-off is similar to what occurs in ordinary QM when one has plane-wave solutions. The
latter wave functions are not square-integrable, unless one places the particle in a box of
finite size.

The mass of the observed universe MU , consistent with the Black-Hole Cosmology
scenario [13], is related to the Hubble radius as follows RH = 2GMU . Inserting this
relation into (36) yields

N =
κRH

2GMo

= κ
MU

Mo

=
κ

2

RH

LP

MP

Mo

⇒ MU ∼ 1060MP (38)
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Introducing now the normalization coefficient 1√
N

into the solution for φ(r) furnishes the
following normalized solution

φnormalized(r) =
φ(r)√
N

=
1√
N

√
κ

8πGMo

1

r
, 0 < κ < 1 (39)

The expression for N depends on the ratio MU

Mo
involving the mass Mo of the particle and

the observed universe’s mass MU . As the mass of the particle varies : Mo →M ′
o so does

the value of N = κMU

Mo
→ N ′ = κMU

M ′
o
, and such that

1 =
1

N

∫ RH

0
φ∗(r) φ(r) 4πr2 dr =

1

N ′

∫ RH

0
φ∗(r) φ(r) 4πr2 dr = . . . (40)

for all values of Mo,M
′
o,M

′′
o , . . .. If one desires to be more rigorous with the notation it

requires writing the spatial part of the normalized wave function as

φnormalized(r) =
φ(Mo)(r)√
N(Mo)

(41)

in order to denote the explicit Mo dependence of the solutions in eq-(39). In particular,
the normalization coefficient N(Mo) = κMU

Mo
actually depends on the ratio of the mass

of the universe MU and the mass of the particle Mo. In this sense one can venture to
contemplate a Machian-like behavior operating in these solutions due to the presence of
MU resulting from the introduction of the infrared cut-off RH in the integral. It is very
important to emphasize that the only matter present in all of these results is the mass
of the particle Mo. There is no other matter besides that, despite the the normalization
constant N(Mo) = κMU

Mo
depends on the numerical value of MU . If Mo is set to be equal

to the mass of the observed universe MU , and consistent with the Black-Hole Cosmology
scenario, one has

N(MU ) =
κRH

2GMU

= κ (42)

The introduction of an infrared cut-off given by the Hubble radius RH requires in-
troducing also a temporal cut-off given by the Hubble time TH , and such that the other
normalization condition in (15) leads to

1

N(Mo)

=
∫ TH

0
ξ∗(t) ξ(t) dt = |ξo|2 TH ⇒ |ξo|2 =

1

N(Mo)TH
(43)

and the marginal probability of finding the particle anywhere in the universe at time t is
constant and inversely proportional to the Hubble time. As TH increases, this marginal
probability gets smaller and smaller. A scaling ξ(t) →

√
N(Mo)ξ(t) will render the integral

(43) to unity. Note that the
√
N(Mo) factors decouple from the relativistic wave function

Ψ(r, t) given by eq-(35)2 since it must obey the condition (14).

2Multiplying and dividing by
√
N(Mo) leaves Ψ(r, t) fixed

9



3 Higher Dimensional Generalizations and

the Bohm-Poisson Equation Revisited

The higher-dimensional extension of the Schwarzschild metric was found by Tangherlini
[15] and can be obtained by simply replacing (dΩ)2 → (dΩD−2)

2 (the D − 2-dim solid
angle) and 1 − 2GM

r
→ 1 − ( rh

r
)D−3 where rh is the horizon radius expressed in terms of

M and the gravitational coupling GD in D dimensions whose units are (length)D−2. The
higher dimensional metric is given by

ds2 = − f(r) (dt)2 +
(dr)2

f(r)
+ r2 (dΩD−2)

2, f(r) = 1 − 16πGDM

(D − 2)ΩD−2rD−3
(44)

where GD is the D-dim Newton’s constant, M the black hole mass. The solid angle of a
D− 2-dim hypersphere is ΩD−2 = 2π

D−1
2 /Γ(D−1

2
). The horizon radius is determined from

the condition f(rh) = 0 giving

rh =

(
16πGDM

(D − 2) ΩD−2

) 1
D−3

(45)

such that the metric (44) can be rewritten as

ds2 = − [ 1− (
rh
r
)D−3 ] (dt)2 + [ 1− (

rh
r
)D−3 ]−1 (dr)2 + r2 (dΩD−2)

2 (46)

One can repeat the whole procedure of section 2 by replacing M → M(r) for an r-
dependent mass function so that the metric function of the modified Tangherlini metric
is now given by

f(r) = 1 − 16πGDM(r)

(D − 2)ΩD−2rD−3
(47)

The relation between the energy-mass density and the probability density φ∗(r)φ(r) is
now of the form

ρ(r) =
1

ΩD−2rD−2

dM(r)

dr
= Mo φ

∗(r) φ(r) (48)

When φ(r) is real-valued the nonlinear Klein-Gordon like equation in D ≥ 4 is a gener-
alization of eq-(25) given by

1

rD−2
∂r

(
rD−2 [1− 16πGDM(r)

(D − 2)ΩD−2rD−3
] ∂r (

M′(r)

ΩD−2MorD−2
)1/2

)
−

λ

rD−2

(
rD−2 [1− 16πGDM(r)

(D − 2)ΩD−2rD−3
]−1 (

M′(r)

ΩD−2MorD−2
)1/2

)
−M2

o (
M′(r)

ΩD−2MorD−2
)1/2 = 0

(49)
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with M′(r) = dM(r)
dr

. When D > 4, no longer one has that M(r) ∼ rD−3 is a solution to
eq-(49). The four-dimensional spacetime case was special.

In [17] we found that in certain physical scenarios Bohm’s quantum potential coincided
with the gravitational potential energy and that a notion of classical/quantum duality
existed in the Quantum Hamilton Jacobi equation casting further light into the deep
interplay between gravity and quantum mechanics. Related to the connection between
Bohm’s quantum potential and the gravitational potential energy is the nonlinear and
novel Bohm-Poisson equation proposed by us in [16]

∇2Q = 4πGmρ ⇒ − h̄2

2m
∇2(

∇2√ρ
√
ρ

) = 4πGmρ (50)

where we have explicitly written the h̄2 factor in (50) (that was set to unity) for conve-
nience.

The physical motivation behind (50) is that the laws of Physics should themselves
determine the distribution density ρ of matter. It has solutions leading to repulsive
gravitational behavior because eq-(50) is invariant under the transformations G → −G
and ρ → −ρ. It is straightforward to verify that a spherically symmetric solution to
eq-(50) in a three-dim spatially flat background is given by ρ = A

r4
, A = − h̄2

2πGm2 < 0.
Consequently −ρ > 0 is a valid positive- definite solution to the Bohm-Poisson equation
associated to a negative gravitational coupling −G < 0 and which is tantamount to
repulsive gravity.

The Bohm-Poisson equation was extended to the relativistic regime in [16] . Two
specific solutions to the Relativistic Bohm-Poisson equation (associated to a real scalar
field) were provided encoding the repulsive nature of dark energy. One solution leads to
an exact cancellation of the cosmological constant, but an expanding decelerating cosmos;
while the other solution leads to an exponential accelerated cosmos consistent with a de
Sitter phase, and whose extremely small cosmological constant is Λ = 3

R2
H

, consistent

with current observations.
A relativistic extension of the Bohm-Poisson equation (50) can be chosen to be defined

in terms of the D’Alambertian operator, and a proper mass density Ω(xµ) of physical

dimensions (mass/L4) = L−5 , such that m =
∫
d4x

√
|g|Ω, and given by an equation of

the following form

2

(
2(

√
Ω)√
Ω

)
= − 4πGmΩ (51)

Given the relativistic wave-function Ψ(xµ) studied in the previous section, of physical
dimensions L−2, on dimensional grounds one can relate Ω to Ψ by setting GmΩ = Ψ∗Ψ,
so that eq-(51) can be rewritten as

2

(
2(

√
Ψ∗Ψ)√
Ψ∗Ψ

)
= − 4πΨ∗Ψ (52)

The left and right hand side of (52) both have units of L−4 without having to introduce
explicit h̄, c factors.
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The deep question of whether or not Bohmian mechanics can be be made relativistic
was studied in [18]. In relativistic space-time, Bohmian theories can be formulated by
introducing a privileged foliation of space-time. The introduction of such a foliation -
as an extra absolute space-time structure - would seem to imply a clear violation of
Lorentz invariance, and thus a conflict with fundamental relativity. The authors [18]
considered the possibility that, instead of positing it as an extra structure, the required
foliation could be covariantly determined by the wave function. This allowed for the
formulation of Bohmian theories that seem to qualify as fundamentally Lorentz invariant.
The authors [18] concluded with some discussion of whether or not they might also qualify
as fundamentally relativistic.

A stationary solution to (52) is of the form Ψ(xµ) = ψ(x⃗)ξoe
iωt. After inserting it into

into eq-(52), the temporal dependence decouples and it leads to

∇2

∇2(
√
ψ∗(x⃗)ψ(x⃗))√
ψ∗(x⃗)ψ(x⃗)

 = − 4π|ξo|2ψ∗(x⃗)ψ(x⃗) (53)

which has the same functional form as the non-relativistic Bohm-Poisson equation (50).
|ξo|2 has dimensions of L−1, and ψ∗(x⃗)ψ(x⃗) have dimensions of L−3 so the overall dimension
is L−4 that match the dimensions of the left-hand side (53).

If Ψ(xµ) is real-valued, Ψ∗ = Ψ, then eq-(52) becomes

2

(
2Ψ

Ψ

)
= − 4πΨ2 (54)

If 2Ψ = m2Ψ the left-hand side of (54) turns out to be zero and which does not match
the right-hand side. Therefore, the solutions to equations of the form given in eq-(18) are
not solutions to eq-(54).

To conclude, we should add that the Geometrization of Quantum Mechanics within
the context of Finsler Gravity and Phase Spaces can be found in [19], [20]. This approach
is different than the one presented here.
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