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Abstract

With the introduction of ChatGPT (OpenAI, 2022) from OpenAI, the power of these mod-
els to generate human-like text has captured widespread public attention.

The scale of language models has burgeoned, progressing from modest multimillion-parameter
architectures like ELMo (Peters et al., 2018) and GPT-1 (Radford et al., 2018), to behe-
moths boasting billions, even trillions of parameters, exemplified by the monumental GPT-3
(Brown et al., 2020), Switch Transformers (Fedus et al., 2022) , GPT-4 (OpenAI, 2023),
PaLM-2 (Anil et al., 2023), and Claude (Claude, 2023) and Vicuna (Chiang et al., 2023).

The expansion in scale has significantly raised hardware requirements, making it exceed-
ingly challenging to deploy models on mobile devices such as smartphones and tablets.

To deploy on cars , we trained a 7-billion-parameter automobile model, which outperforms
GPT-3.5 in the automotive domain. Surpassing all models in areas such as automotive
maintenance, navigation queries, and beyond.
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1 Introduction

Evidence suggests that large models exhibit emergent an emergent capability that is absent
in smaller models (Wei et al., 2022). A typical example is few-shot prompting. Few-shot
prompting significantly expands the range of tasks supported by models and lowers the bar-
rier to entry for users seeking automation for new language tasks.

After GPT-3, models grew in size to 280 billion (Gopher, Rae et al., 2021), 540 bil-
lion (PaLM, Chowdhery et al., 2022), and 1 trillion parameters (Megatron, Korthikanti
et al., 2023). But their attention has been almost exclusively focused on general large lan-
guage models,GPT-4 (OpenAI, 2023), PaLM-2 (Anil et al., 2023), Claude (Claude, 2023)
,LLaMA (Touvron et al., 2023), Alpaca (Taori et al., 2023), Vicuna (Chiang et al., 2023),
and others (Wang et al., 2022; Zhu et al., 2023; Anand et al., 2023).

In recent endeavors aimed at training models solely with domain-specific data, the resulting
models, albeit significantly smaller, have outperformed general-purpose LLMs in tasks spe-
cific to those domains, such as science (Taylor et al., 2022) and medicine (Luo et al., 2022b;
Hernandez et al., 2023). These discoveries inspire further advancement in the development
of Large Language Model for automobile .

Objective We train a 7 billion-parameter language model tailored to cater to a diverse
array of tasks within the automobile sector.

Domain-specific LLMs. The few existing domain-specific LLMs are trained exclu-
sively on domain-specific data sources (Luo et al., 2022a; Taylor et al., 2022), or adapt a
very large general purpose model to domain-specific tasks (Singhal et al., 2023; Lewkowycz
et al., 2022). Our research aims to train LLMs using a combination of domain-specific and
general data. The resulting model performs exceptionally well on domain-specific tasks
while also maintaining robust performance on general benchmarks.

Training data. In terms of data processing, we focus on data deduplication and high-
quality data..

Architecture The model architecture of Automobile 7B is based on the prevail-
ing Transformer (Vaswani et al., 2017). Nevertheless, we made several modifications .

Tokenizer We use byte-pair encoding (BPE) (Shibata et al., 1999) from SentencePiece
(Kudo and Richardson, 2018) to tokenize the data .

Positional Embeddings We use Rotary Positional Embedding (RoPE) (Su et al.,
2021) .

Activations and Normalizations We use SwiGLU (Shazeer, 2020) activation func-
tion, a switch-activated variant of GLU (Dauphin et al., 2017) which shows improved re-
sults.

We implement Layer Normalization (Ba et al., 2016) at the input of the Transformer
block, known for its resilience to the warm-up schedule (Xiong et al., 2020). Furthermore,
we integrate the RMSNorm technique proposed by (Zhang and Sennrich, 2019), which
exclusively computes the variance of input features, enhancing computational efficiency.

Optimizations We use AdamW (Loshchilov and Hutter, 2017) optimizer for training.
β1 and β2 are set to 0.9 and 0.95, respectively. We use weight decay with 0.1 and clip the
grad norm to 0.5. Following a regimen of 2,000 linear scaling steps, the models are primed,
gradually ascending to the peak learning rate before transitioning to a cosine decay, tapering
down to the minimum learning rate.
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To stabilize training and improve the model performance, we normalize the output em-
beddings.Because we observed that the norms of the heads tend to be unstable. Addi-
tionally, the norm of embeddings for rare tokens decreases during training, which dis-
rupts the training dynamics. Moreover, we have found that semantic information is
primarily encoded through the cosine similarity of embeddings rather than L2 distance.

Data We added 45% of automotive specialized knowledge books, comprehensive automo-
tive information, automotive repair textbooks, and maintenance manuals for all vehicles
to the data used for training the general LLM. First, train the large model with 40%
of general data and 10% of automobile data to let it learn language and basic knowl-
edge. Finally, train it with a mixture of 15% general data and 35% automobile data.

Train We use deepspeed zero2. The communication cost of Deepspeed Zero3 is too high,
so we do not adopt it. We have conducted performance optimization to enhance GPU com-
putational efficiency and throughput.

2 Results

We juxtaposeAutomobile 7B against llama and conduct a re-evaluation of all benchmarks
using our proprietary evaluation pipeline to ensure impartial comparison. Performance is
assessed across a diverse array of tasks categorized as follows:

Popular aggregated results: MMLU (Hendrycks et al., 2020) (5-shot) and BBH (Suz-
gun et al., 2022) (3-shot) CommonsenseQA (Talmor et al., 2018), ARC-Challenge (Clark
et al., 2018)

Code: Humaneval (Chen et al., 2021) (0-shot) and MBPP (Austin et al., 2021) (3-shot)

World Knowledge (5-shot): TriviaQA (Joshi et al., 2017),NaturalQuestions (Kwiatkowski
et al., 2019)

Commonsense Reasoning (0-shot): Hellaswag (Zellers et al., 2019), OpenbookQA (Mi-
haylov et al., 2018), ARC-Easy, PIQA (Bisk et al., 2020),

Reading Comprehension (0-shot): BoolQ (Clark et al., 2019), QuAC (Choi et al.,
2018)

Math: GSM8K (Cobbe et al., 2021) (8-shot) with maj@8 and MATH (Hendrycks et al.,
2021) (4-shot) with maj@4

Model MMLU HellaSwag WinoG PIQA Arc-e NQ TriviaQA HumanEval MBPP MATH GSM8K

LLaMA 2 7B 44.4% 77.1% 69.5% 77.9% 68.7% 24.7% 63.8% 11.6% 26.1% 3.9% 16.0%
LLaMA 2 13B 55.6% 80.7% 72.9% 80.8% 75.2% 29.0% 69.6% 18.9% 35.4% 6.0% 34.3%

Automobile 7B 56.2% 80.5% 72.2% 80.2% 73.3% 30.2% 69.2% 30.3% 35.2% 12.2% 45.3%

Table 1: Comparison of Automobile 7B with llama. Automobile 7B is comparable to
llama2 across all metrics, and excels in the automotive domain compared to ChatGPT.

3 Conclusion

We employed an new training method, starting with a larger proportion of general data
before gradually increasing the incorporation of automotive domain knowledge during the

3



training process. The resulting model performed better than those trained directly on uni-
formly mixed general and automotive data.
Our model contributes to the ongoing dialog on effective ways to train domain-specific mod-
els.
We have presented Automobile 7B, a best-in-class LLM for automobile NLP.
We’ve obtained impressive outcomes on general LLM benchmarks, surpassing similar mod-
els in automobile tasks. We attribute this to the meticulously curated dataset.We will
continue to gather larger-scale automobile domain data to further optimize our model.
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