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Abstract

A simple procedure for capturing all the pos-
sible configuations of a Feynman diagram us-
ing nodal incidence matrices is given. A nodal
incidence matrix represents all the conforma-
tions of an interaction because as far as the
matrix is concerned, all that matters is the
connectivity of the diagram, the directionality
of the branches and the composition of the
branches. There is no specification of node
coordinates or branch length. An example is
worked out for the Feynman diagram for pair
production and annihilation. The construc-
tion of nodal incidence matrices from Feynamn
diagrams is noncanonical since the number-
ing of nodes and branches is arbitrary. How-
ever, equivalent Feynman diagrams are inferred
from equivalent nodal incidence matrices.
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Introduction

Despite the superior intuitive appeal of Feynman
diagrams, a mathematization of their representation
is useful since by doing so, we can capture all the
possible configuations of the events in spacetime in
one mathematical statement, thereby generalizing
the Feynman diagram.

Why Nodal Incidence Matrices? Feyn-
man Diagrams Transcending Spacetime

It was discovered by the author in (2) that spacetime
is not a primitive but is rather created by a current
of virtual particles interacting with the cross section
of an observable particle. The mathematics behind
the theory of relativistic quantum spacetime is very
simple and easy to understand but the physical rea-
soning is very deep. Given that relativistic quantum
spacetime is created by a current of virtual particles,
we need to have a way to designate a Feynman dia-
gram that lives outside of spacetime, i.e., it is only
the connectivity of the diagram that matters. It is
assumed that the Feynman diagram representing
this current of virtual particles is infinitely compact
and the number of nodes and branches are uncount-
ably infinite. Describing Feynman diagrams with
nodal incidence matrices fills this gap. Since the
curvature of spacetime is completely accounted for
by Einstein’s general theory of relativity, relativis-
tic quantum spacetime, which has the property of
nonreflexive distance (thereby accounting for relative
masses), points the way towards an actual theory of
quantum gravity.



In the article (2), it was discovered by the author
that the mass ratio of two subatomic particles could
be accounted for solely by the consideration of the
particle’s cross sections and the introduction of a
version of relativistic quantum spacetime that has
the property of nonreflexive distance. Refer to the
article for a derivation, but the theory of the proton-
electron mass ratio is encapsulated by the relations
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where R,. is the distance from the proton to the
electron, R., is the distance from the electron to the
proton, P,, is the power (of the current of virtual
particles) transmitted by the proton, P, is the power
transmitted to the electron and then received back
(echo) by the proton, and so forth, B is Bonnar’s con-
stant which is an integer having value 11366719876399,
and [ is the proton-electron mass ratio.

Eqgn. 1 essentially amounts to relativistic quantiza-
tion of spacetime and it is proposed that the virtual
particles are actually creating spacetime and, in con-
junction with particle’s cross section, relative mass.

Now since it can be assumed that P,,,/P,. = 1, we'll
say that
-Pt,p PT‘,@ . Up

Pr,p F)t,e B Oe .
so the radius of the electron can be solved for quite

simply and it is found that the result agrees with the
experimental value.

B = (2)
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Much can be inferred from Eqns. 1 and 2 taken
together. Most importantly, mass is not an intrin-
sic property of subatomic particles. This fact was
proven a second way by the author in (3). Rather,
particle mass is a function of the particle’s cross
section and the nonreflexive nature of relativistic
quantum spacetime. The only intrinsic property of
the particle that contributes to mass is the cross
section. Particles such as electrons and protons that
are considered to have mass have a noninfinitesimal
cross section. But all particles that exist have a cross
section and therefore all particles have mass. Par-
ticles such as photons, gluons and gravitons, that
are conventionally considered to have zero mass, are
point-like and therefore have infinitestimal cross sec-
tions, thus have infinitesimal mass (otherwise they
wouldn’t exist). The only type of "object" that actually
has zero mass is any portion of the classical vacuum.

Since it is postulated that a current of virtual par-
ticles produces relativistic quantum spacetime, we
need a way to describe a Feynman diagram that ex-
ists outside of spacetime. We cannot possibly do
this with a graphical depiction of the diagram. For
such a Feynman diagram the position of the nodes
and the lengths of the branches is irrelevent; all we
need to do is state the connectivity and directionality
of the events and the composition of the branches.
Doing so captures the essence of the interaction and
it represents all of the possible conformations of the
Feynman diagram.



Generalizing Feynman Diagrams - Nodal
Incidence Matrices

Nodal Incidence matrices can be used to describe
networks composed of nodes and branches (which
connect the nodes). Typically the branches possess
directionality. Nodal incidence matrices can be used
to describe the configuration of one-way and two-way
streets in a city, electrical networks and many other
types of networks (1). In our case, we are going to
use nodal incidence matrices to describe Feynman
diagrams.

Using nodal incidence matrices to describe Feynman
diagrams is a useful concept and though not as expe-
dient to understand as a graphical diagram, nodal in-
cidence matrices generalize the diagram. One might
imagine stretching and/or shrinking some or all of
the branches and/or moving the nodes around in
spacetime. A nodal incidence matrix captures all of
these configurations because as far as the matrix
is concerned, all that matters is the connectivity of
the diagram, the directionality of the branches and
the composition of the branches (i.e., a branch rep-
resents a certain type of particle).

Constructing a nodal incidence matrix for a Feyn-
man diagram is straightforward. Since our nodal in-
cidence matrix represents a Feynman diagram, let’s
denote it F. We shall define the elements of the nodal
incidence matrix F = [p,a;;]. Each type of particle is
represented by a unique positive integer p, that we
are allowed to arbitrarily choose. In our example, the
Feynman diagram, or interaction, involves electrons,
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positrons and a photon. We shall arbitrarily choose
py =1, p.- = 2 and p.+ = 3. These numbers represent
the absolute value of their respective branches.

Next we define a;;, which is dependent upon whether
the branch leaves, enters, enters or leaves, or neither
enters or leaves, a node. It is defined as follows:

+1 if branch £ leaves node j
—1 if branch k enters node j
¢  if branch k enters or leaves node j
0 if branch k£ does not touch node j

ajk =

(3)
So given these definitions and by referring to figure 1,
it is trivial to construct the corresponding nodal inci-
dence matrix. In the diagram, the circled numbers
represent nodes, whereas the uncircled numbers
represent branches. The numbering is arbitrary.
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Figure 1: Feynman diagram for pair production and
annihilation (In the Stiickelberg-Feynman interpre-
tation, pair annihilation is the same process as pair
production.)

The resulting nodal incidence matrix is

branch— 1 2 3 4 5
_node1—><—2 30 0 i> @
node2—-\ 0 0 -3 2 1

The elements of F tells us what is where and what
happens where. For example, given our definitions,
fin = —2 tells us that an electron enters node 1,
fo3 = —3 tells us that a positron enters node 2,
f24 = 2 tells us that an electron leaves node 2, f,5 =
tells us that a photon can enter or leave node 1,
f1.4 = 0 tells us node 1 is not touched by branch 4,
and so forth.



8

Afterthoughts

The process of constructing a nodal incidence matrix
F is not canonical since the nodes and branches
of the diagram are numbered arbitrarily. However,
if the numbering scheme is designated along with
the nodal incidence matrix, everyone would draw an
equivalent Feynman diagram upon deciphering it.
The interchange of any rows (columns) merely rep-
resents a different arbitrary numbering of the nodes
(branches), which lead to equivalent diagrams.

We now have a way, to not only generalize conven-
tional Feynman diagrams that live within spacetime,
but also to designate Feynman diagrams that live
outside or precede spacetime. This development will
be very important in the development of a theory of
quantum gravity since such a theory will ultimately
rest upon the quantization of spacetime.

References

1. Kreyzig, E. (1993). Advanced Engineering Math-
ematics. John Wiley & Sons

2. Bonnar, J. (2024). "A Theoretical Account of the
Proton-Electron Mass Ratio". vixra.org:2401.0053

3. Bonnar, J. (2024). "A Short Note on the de
Broglie Wavelengths of Composite Objects".
vixra.org:2401.0150

4. Diestal, R. (2005). Graph Theory. Graduate
Texts in Mathematics, vol. 173. Springer-Verlag



. Gross, J. (2006). Graph Theory and its Applica-
tions, 2nd Edition.

. Skiena, S. (1990). Implementing Discrete Math-
ematics. Reading, MA: Addison-Wesley



