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Abstaract 
 

In this paper, we performed comprehensive systemization of weak KAM theory, the ultramodern theory in 

mathematics domain that is being regarded as important in theoretical and application aspect and is being studied 

actively in the world in present. Moreover we also systemized comprehensively the conjectures, the open problems, and 

the point at issue that are proposed in weak KAM theory. They contain 17 of the points at the issue that are newly 

proposed in this paper. 
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1. Introduction 

1.1. Aim of the paper 

The the fundamental research objects of weak KAM theory are Hamilton ordinary differential equations and 
Hamilton-Jacobi partial differential equations. Since Hamilton ordinary differential equation equivalent to the Newton 
equation that is the second low of motions ),( xxFxmma &&&   they are used often in various mechnical and 
enginnerring problems. On the other hand, since the value functions in optimal control theory satisfy Hamilton-Jacobi 
equation (see [Bardi, 1997]) Hamilton-Jacobi equations are also used in various engineering problems such as optimal 
control problems and differential game problems. Therefore weak KAM theory that bridges between viscosity solution 
theory of Hamilton-Jacobi equations and qualitative theory of Hamilton equations is applied to various mechanical 
problems and enginnering problems. In fact weak KAM theory are applied to vasious mechanical problems and 
engineering problems such as large time behaviour problem of evolutionary Hamilton-Jacobi equations, the hogenization 
problems of Hamilton-Jacobi equations, optimal transportation problems, optimal switching problems, optimal control 
problems, problems related to weakly coupled system, problems related to mean field game. 

To review the whole features of weak KAM theory that is being studied in various fields actively on the world scale 
in present is a bit difficult problem. Although many review papers related to weak KAM theory such as c[Gomes 2002], 
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a[Evans 2004], [Evans 2005], [Kaloshin 2005], [Siconolfi 2006], [Bernard 2012], [Fathi 2012] [Siconolfi 2012], [Rifford 
2013], [Fathi 2014], [Siconolfi 2016], [Sorrentino 2016], [Sorrentino-Bernardi, 2017] are proposed in the past, they 
review an aspect of weak KAM theory. So the comprehensive systemization of weak KAM theory has not been done yet.  

Therefore we performed the comprehensive systemization of weak KAM theory for one to review the whole of 
fields and detailed fields of weak KAM theory. Moreover we sytemized comprehensively the conjectures, the open 
problems, and points at the issue proposed in detailed fields of weak KAM theory. They contain 17 problems such as 

problemⅠ.1-1, problem Ⅰ.1-2, problem Ⅰ.3-2, problem Ⅰ.4-5, problem Ⅰ.5-4, problem Ⅰ.5-5, problem Ⅰ.6-1, 

problem Ⅰ.6-2, problem Ⅱ.1-2, problem Ⅱ.4-1, problem Ⅱ.4-2, problem Ⅱ.4-3, problem Ⅱ.4-4, problem Ⅱ.5-1, 

Problem Ⅱ.5-2, problem Ⅱ.7-1, problem Ⅱ.7-2 that we set up newly in this paper. 
 
1.2. Outline of KAM theory, Aubry-Mather theory, and weak KAM theory 

Assume that M  is n -dimensional C compact connected manifold. MT*  denotes cotangent bundle of M  

and MMT *
* : denotes standard projection. We call a continuous function RMT*  Hamiltonian on M . We 

denote point of MT*  by ),( px with Mx  and  )(1
*

* xMTp x
  . Here ),(* RMTLMT xx   denotes the linear 

space of linear forms RMTx . 

Let us )(),(;: 0
*

0 pHpxMTH aR  and ),(),(;: 1
*

1 pxHpxMTH aR  are real analytic function and 

0 . Then we put 
),()(),( 10 pxHpHpxH  .                    (1.0) 

We call the Hamilton equation with Hamiltonian (1.0) 

),(),,( px
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dt
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                         (1.1) 

the nearly integrable Hamiltonian system. If 0 , then (1.1) become 
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and therefore the solution of (1.1) satisfying initial condition 00 )0(,)0( ppxx   is 

000 )(),(,)()( ptpttpxtx  R .                        (1.3) 
Thus non-perturbating system (1.2) is integrable.  

If nnnM ZRT / ( n -dimensional torus), then from (1.3) any solution of (1.2) is conditionally periodic and 

}{)( 00 pp n  TT  is the invariant torus of (1.2). Then the vector np R)( 0  is called the frequency vector of the 

torus )( 0pT . Since nnn

p

Tp
n

TRT

R

*
0

0

)( 

UT  the phase space of (1.2) n

T T
*  is represented as non-intersection 

sum of invariant tori.  

Initial point n
Tpx T

*
00 ),(   lies on the invariant torus }{)( 00 pp

n  TT  and from invariantness of )( 0pT  

the solution orbit nTttptx TR *};))(),({(   of (1.2) lie on )( 0pT .   Since )( 0pT  is compact the solution orbit 

};))(),({( Rttptx  is bounded. Therefore any solution of (1.2) is Lagrange stable.   

Here the problem that invariant tori )(),( 00
n

pp RT  of the unperturbed Hamiltonian system for 0  persist 

when 0  is raised. Originally Poincaré himself called the problem of studying perturbations of quasi-periodic 
motions in nearly integrable Hamiltonian systems, the fundamental problem of dynamics([Arnold 1989], pp. 400).  

The celebrated KAM theory by [Kolmogorov 1954], [Arnold 1963], [Moser 1962] clarified that under some 

condition if   is sufficiently small, then almost of invariant tori )(),( 00
npp RT  in unperturbed persist as invariant 

tori with same frequency vector )( 0p . Then the invariant tori of perturbed Hamiltonian system (1.2) are called the 
KAM tori.    

Then the KAM theory proposed the problem that how is fate of the invariant tori when perturbation parameter 
becomes large. Tne Aubry-Mather theory by [Aubry-Daeron 1983], [Mather 1982] provided the answer to the problem.    

Aubry-Mather theory clarified that for monotone twist area preserving diffeomorphism of two-dimensional annulus 

)1,0(1  SA (See [Katok-Hasselblatt 1995]) there exist invariant sets called Aubry-Mather sets with any rotation 

number and they are the graphs of a Lipsitz functions difined of the circle 1S .      
On the other hand, the symplectic map that transfer the Hamiltonian to integrable Hamiltonian in KAM theory is 

given from the generation function which is a differentiable solution of the corresponding Hmilton-Javobi equation. 
Then the graph of the derivative of the solution of the Hamilton-Jacobi equation becomes the invariant torus of the 
Hamilton equation.  
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Let us explain this fact more in detai. Let us consider the Hamilton equation (1.1) with the Hamiltonian (1.0) 

defined on the cotangent bundle )},{(*
pxT

nnn  RTT  on nM T and Hamilton-Jacobi equation for Hamilton 

equation (1.1) 

)(),( PH
x

u
xH 



.                           (1.4) 

Here )(;: PHPH n
aRR   is a certain 2C function.  

Assume that ),(),(;: PxuPxu
nn

aRRT  is a 1C solution of (1.4). Then let us compose symplectic map 

),(),(),(;: pxPXPXnnnn   aRTRT based on implicite function relation 
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For any nP R  we define nn
PF TT :  by ),()( Px

P

u
xFX P 


 . Now we assume that for any nP R  

there exists the inverse map )(;: 11 XFxXF P
nn

P
  aTT  of PF . We define nnn TRT :  by 
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Next we define nnnn
RTRT :  by )),(),,((),(),( PXPXpxPX   . Then   is a symplectic map by 

theory of generationg function with symplectic map (see [Arnold 1989], Chapter 9, Section 47). Let us 
nnnn RTRT :  is the inverse map of  . Then   is also a symplectic map. If ),(),( PXpx  , then 

),(),( 1
pxPX

   and )),(),,((),(),( PXPXPXpx   . 

Let us transfer Hamilton equation (1.1) by sympletic map ),(),(: PXpx  . Then the Hamiltonian in new 

coordinate system is given by 
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Therefore Hamilton equation (1.1) is transered to 

0),(:)( 















X

K

dt

dP
PP

P

H

P

K

dt

dX
 .                    (1.1)′ 

The solution of (1.1)′ satisfies initial condition PPXX  )0(,)0(  is given by 

)(,),)(( RRT  tPXtP
nn .                      (1.6) 

Therefore )(},{ nn PP RT   are invariant tori of (1.1)′ . Consequently 
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are invariant tori of (1.1) and these invariant tori are the graph of the derivatives of the solution of the Hamilton-Jacobi 
equation (1.4).  

However as it happens, it is usually impossible to find global 1C  solutions of Hamilton-Jacobi equations (see 
[Fathi 2012]). So [Crandall-Lions  1983] developed the theory of viscosity solution, weak solution of Hamilton-Javobi 
equation that is not differentiable in general. A. Fathi clarified the connection between the theory of viscosity solution of 
Hamilton-Javobi equation and Aubry-Mather theory in a numer of papers such as a[Fathi 1997], b[Fathi 1997], a[Fathi 
1998], b[Fathi 1998] etc and initiated the so-called weak KAM theory. A. Fathi developed his theory for the Tonelli 

Hamiltonian systems. ),(),(;: *
pxHpxMTH aR  is called Tonnelli if and only if 1) H  is 2C , 2) ),( pxH pp  

is definite positive as quadratic form, 3) 


||||/),(lim
||||

ppxH
p

(superliarity). After the study of A. Fathi the weak 

KAM theory is generalized to various cases that is not Tonelli Hamiltonian system on compact manifolds and has found 
applications in different domains.  
     

2. Comprehensive systemization of weak KAM theory 



 4

2.1. Outline of comprehensive systemization of weak KAM theory 

We can systemize weak KAM theory largely as follows: 
Ⅰ. Research on fundamental problems of weak KAM theory  
Ⅱ. Research on generalizations or variations of weak KAM theory 
Ⅲ. Research on applications of weak KAM theory 
 
We can systemize these three of the fields to following detailed fields in the total: 

Ⅰ. Fundamental problems of weak KAM theory  

Ⅰ.1. Lax-Oleinik semi-group 
Ⅰ.2. Minimizing measures  
Ⅰ.3. Reguraity of weak KAM solutions 
Ⅰ.4. Action minimizing invariant sets 
Ⅰ.5. PDE methods for weak KAM theory 
Ⅰ.6. Perturbation theory methods in weak KAM theory 
Ⅰ.7. Numerical methods for weak KAM theory 

Ⅱ. Variations of weak KAM theory 

Ⅱ.1. Weak KAM theory for coersive Hamiltonian systems 
Ⅱ.2. Weak KAM theory on non-compact finite-dimensional manifolds 
Ⅱ.3. Weak KAM theory for non-convex Hamiltonian systems 
Ⅱ.4. Weak KAM theory for contact Hamiltonian systems 
Ⅱ.5. Weak KAM theory for conformally symplectic systems 
Ⅱ.6. Weak KAM theory for Hamiltonian systems that depend on unknown function  
Ⅱ.7. Infinite dimensional weak KAM theory 
Ⅱ.8. Stochasitic weak KAM theory  
Ⅱ.9. Discrete weak KAM theory 
Ⅱ.10. Quntum weak KAM theory 
Ⅱ.11. Weak KAM theory for weakly coupled systems 

Ⅲ. Applications of weak KAM theory 

Ⅲ.1. Large time behaviour of evolutionary Hamilton-Jacobi eauations   
Ⅲ.2. Homogenization of Hamilton-Jacobi eauations  
Ⅲ.3. Weak KAM theory related to optimal transportation problems 
Ⅲ.4. Weak KAM theory related to optimal switching problems 
Ⅲ.5. Weak KAM theory related to optimal control problems  
Ⅲ.6. Mean field games 
Ⅲ.7. Construction of smooth time functions on Lorentzian manifolds  
Ⅲ.8. Inverse Lyapunov theorems 
 
2.2. Details of the comprehensive systemization of weak KAM theory 

We explain the contents of each detailed fields of weak KAM theory minutely below. 
 

Ⅰ. Fundamentals problems of weak KAM theory 

Ⅰ.1. Lax-Oleinik semi-group and existence of weak KAM solutions 

In here, we research existence of fixed point of Lax-Oleinik semi-group corresponding to the Lagramgian and we 
research convergence of Lax-Oleinik semi-group when time goes to  . Lax-Oleinik semi-group converges to negative 
weak KAM solution when time goes to   and this theorem is called "the weak KAM theorem".   

The theory related to Lax-Oleinik semi-group contains the following themes:  

• Convergence of Lax-Olinik semi-group (See b[Fathi 1998]). 

• Non-convergence of the Lax-Oleinik semi-group in the time-periodic case (See [Fathi-Mather 2000]). 

• A new kind of Lax-Oleinik type operator for time-periodic positive definite Lagrangian systems (see [Wang-Yan 
2012]). 
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• Lax-Oleinik semi-group for a weakly coupled system of Hamilton-Jacobi equations (see [Figalli-Goems, 2016]). 

• Lax-Oleinik semi-group for infinite-dimensional Lagrangian systems (see [Shi-Yang 2016]). 

• Lax-Oleinik semi-group in weak KAM theory (see [Zavidovique 2009], [Zavidovique 2010], [Zavidovique 2012], 
[Bernard-Zavidovique 2013]). 

• Herglotz’ variational principle and Lax-Oleinik evolution (see [Cannarsa, 2020]). 

 

Ⅰ.2. Minimizing measures 

The minimizing measures have close connection with the generalizaition of classical Aubry-Mather theory in 
two-dimansionanal phase space in the case of high-dimension. In 1991, J. N. Mather generalizaed Aubry-Mather theory 
for high-dimension Lagrangian systems in [Mather  1991]. However, since there exists the old example with 

Riemannian metric on 3T  having only three derections which there are shortest geodesic lines by [Hedlund 1932], 
Mather treated minimizing measures instead of minimizing orbits. Mather clarified that for any vector there exists 
action-minimizing mesure with that rotation vector is the vector. Weak KAM theory that was initiated by A. Fathi 
bridged between Mather theory and PDE methods concerned with Hamilton-Jacobi equations.  

In theory on the minimizing mesures, we clarify that there exists minimal measure  (Mather measure) minimizing 

the action 
TM

Ld  among the probability measures on TM  which is invariant to the Euler-Lagrangian flow and the 

support of the measure   lay on the graph of a Lipsitz continuous function and the support become invariant torus with 

Euler-Lagrangian flow if the support coincide to all of the graph. Moreover we also research to understand these results 
in the point of view of viscosity solutions of Hamilton-Jacobi equations. And we research the regularity estimation of 
viscosity solutions of Hamilton-Jacobi equations using Mather mesures. On the other hand, we research the connections 
between various consepts such as Green bundle, Lyapunov exponents of minimizing measures, and weak KAM solutons. 
In the meantime we research results related to the approximation of Mather measures.   

The theory related to minimizing measures contains the following themes:  

• Existence of action minimizing invariant measures for positive definite Lagrangian systems  (see a[Mather 1989], 
[Mather 1991], [Carneiro 1995]).  

• Action minimizing orbits in Hamiltonian sytems (see [Mather-Fomi 1994]). 

• Ergodic variational methods (see [Mañé 1995]). 

• Minimizing measures for time-dependent Lagrangians (see [Iturriagar 1996]). 

• Generic properties and minimizing measures of Lagrangian systems (see [Mañé 1996]). 

• Lagrangian flows and the dynamics of globally minimizing orbits (see [Mañé 1997]) . 

• Lagrangian graphs, minimizing measures and Mañé's critical values (see [Contreras, 1998]). 

• Global minimizers of autonomous Lagrangians (see [Contreras-Iturriaga 2000]). 

• Duality principles for fully nonlinear elliptic equations (see b[Gomes 2005]). 

•Generalized Mather problem and selection principles for viscosity solutions and Mather measures (see [Gomes 
2008]). 

• The number of Mather measures of Lagrangian systems (see [Bernard 2010]). 

• Green bundles, Lyapunov exponents and regularity along the supports of the minimizing measures (see a[Arnaud 
2010], [Arnaud 2012]). 

 
Ⅰ.3. Research on regurality of weak KAM solutions 

In research on regurality of weak KAM solutions, we research the connection between existence of global visicosity 

solutions and existence of global 1C  solutions of stationary Hamilton-Jacobi equations and we research existence of 

global 1C  critical viscosity subsolutons, existence of 1,1C  viscosity subsolutions, strictness of solutions outside of 
Aubry set, and connection between regurarity and dynamical behaviors. On the other hand, we research the indication of 
singularity of viscosity solutions and dynamical and asymptotic behavior of them based on the fact that viscosity 
solutions of Hamilton-Jacobi equations indicate singularity easily.  

The theory related to regularity of weak KAM solutions contains following themes: 

• Regularity of 1C solutions of the Hamilton-Jacobi equations (see [Fathi 2003]). 
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• Existence of 1C critical subsolutions of the Hamilton-Jacobi equations (see [Fathi-Siconolfi 2004], b[Bernard 

2007]).  

• Existence of 1,1C  critical sub-solutions of the Hamilton-Jacobi equations (see a[Bernard 2007]).  

• Regurality of visicosity solutions of Hamilton-Jacobi equations and generalized Sard’s theorems (see [Rifford 
2008]).  

• Existence and regularity of strict critical subsolutions in the stationary ergodic setting (see [Davini-Siconolfi 
2014]). 

• Dynamic and asymptotic behavior of singularities of weak KAM solutions (see b[Cannarsa, 2019]). 
  
Ⅰ.4. Research on action-minimizing invariant sets 

J. N. Mather generalized the classical Aubry-Mather theory concerned with the action minimizing orbits of the 
monotone twist area-preserving diffeomorphisms of annulus to high-dimensional Lagrangian systems in [Mather 1991]. 
He developed similar theory with Aubry-Mather theory using the action-minimizing mesures instead of the 
action-minimizing orbits. Then Mather set is defined 184 page of [Mather 1991]([Fathi 2008]) and Mañé set is defined in 
144 page of [Mañé 1997]([Fatthi 2008]). Aubry set is also defined Mather’s research related to Lagrangian 
systems([Bernard 2005]).    

By studying the dynamical behavior of the action-minimizing curves for Tonelli Lagrangian systems, weak KAM 
theory founded by A. Fathi bridged Mather theory and the PDE methods concerning the associated Hamilton-Jacobi 
equation([Li-Yan 2014]). In weak KAM theory, Aubry sets, Mather sets, and Mañé sets are represented in terms of 
viscosity soluions for Hamilton-Jacobi equations(See [Fathi 2008]).      

In research on action-minimizing sets we research connections between the qualitative properties of the 
Hamiltonian systems, viscosity solutions of the associated Hamilton-Jacobi equations, and Mather set, Aubry set, and 
Mañé set. Especially the Mañé’s conjectures that assert generically(roughly speaking, in almost of cases) Aubry set 
consist of an equilibrium point or a periodic orbit are the cetral problems in this field. See Conjecture Ⅰ.4-1 and 
Conjecture Ⅰ.4-2 in section 3 for Mañé’s conjectures. 

The theory related to action-minimizing invariant sets contains following themese: 

• Les ensembles d’Aubry-Mather d’un difféomorphisme conservative de l’anneau déviant la verticale sont en 
général hyperboliques (see a[Calvez 1988]).  

• Action potential and weak KAM solutions (see [Contreras 2001]). 

• Symplectic aspects of Aubry-Mather theory (see a[Bernard 2005]). 

• PDE aspects of Aubry-Mather theory for quasiconvex Hamiltonians (see [Fathi-Siconolfi 2005]). 

• Counting geodesics which are optimal in homology (see [Anantharaman 2000]). 

• The Hausdorff dimension of the Mather quotient (see [Fathi-Figalli-Rifford 2009]).  

• A geometric definition of the Aubry-Mather set (see [Bernard-dos Santos 2010]). 

• Aubry set from a PDE point of view (see [Fathi 2012]).  

• Generic hyperbolicity of Aubry sets on surfaces (see [Contreras, 2013]). 

• Regularity of weak KAM solutions and Mañé conjectures (see [Rifford 2013]). 

• Exact Lagrangian submanifolds, Lagrangian spectral invariants and Aubry-Mather theory (see [Amorim, 2016]). 
 
Ⅰ.5. PDE methods of weak KAM theory 

The PDE methods of weak KAM theory is the research that searches “integrable structures” within general 
Hamiltonian dynamics using dynamical system theory, calculus of variation, and PDE methods([Evans 2005]).  

The theory related to PDE methods of weak KAM theory contains following themes:  

• Fundamental theory of PDE methods for weak KAM theory (see a[Evans 2003], a[Evans 2004], [Evans 2005], 
[Evans 2009]). 

• Effective Hamiltonians and averaging for Hamiltonian dynamics (see [Evans-Gomes 2001], [Evans-Gomes 

2002]). 

• Existence of solutions for the Aronsson-Euler equation (see [Fathi-Siconolfi 2006]). 

• L variational problems and weak KAM theory (see [Yu 2006]). 
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• New estimate on Evans’ variational approach to weak KAM theory (see [Bernardi, 2013]). 

• New identities for weak KAM theory(see [Evans 2017]). 

 

Ⅰ.6. Perturbation theory in weak KAM theory 

In the perturbation theory in weak KAM theory, we give the perturbation estimation of weak KAM solution u  

with parameter   for the nearly integrable tonelli Hamiltonian system 

)),,((),,,()( 10 TRT  nntpqtpqHpHH   
and research stability of viscosity solutions, Mather set, Aubry set, Mañé set, and backword(forword) calibrated curves 
under the perturbation.  

The perturbation theory in weak KAM theory contains following themes:  

• Perturbation theory for viscosity solutions of Hamilton-Jacobi equations and stability of Aubry-Mather sets (see 
[Gomes 2003], b[Gomes 2002]). 

• Perturbation theory and siscrete Hamiltonian dynamics (see [Gomes-Valls 2003]). 

• Perturbation estimates of weak KAM solutions and minimal invariatn sets for nearly integrable Hamiltonian 
systems (see [Chen- Zhou 2017]). 

• Singularly perturbed control systems with noncompact fast variable (see [Nguyen-Siconolfi 2017]).  
 

Ⅰ.7. Numerical methods for weak KAM theory 

In the numerical methods for weak KAM theory, we research the convergence of the approximate solution for 
effective Hamiltonian and research numerical simulation of Aubry set using approximate solution, and et al. 

The theory related to numerical methods for weak KAM theory contains following themes:  

• Numerical approximation of the effective Hamiltonian and of the Aubry set for first order Hamilton-Jacobi 
equations (see [Rorro 2005]). 

• Difference approximation to Aubry-Mather sets (see b[Soga 2009], d[Soga, 2010]). 

• Numerical analysis on the regular motions of Hamiltonian dynamics (see a[Soga 2010]). 

• Numerical methods for static Hamilton-Jacobi equations (see [Luo 2009]). 

• Fast adaptive numerical methods for high frequency waves and interface tracking (see  [Popovic 2012]). 

• Fast weak-KAM integrators for separable Hamiltonian systems (see [Bouillard, 2015]). 

• Rapid numerical solution of Hamilton-Jacobi equations in stable manifold method (see  [Hamaguchi, 2015]). 

• Stochastic and variational approach to Lax-Friedrichs scheme (see [Soga 2016]). 
 

Ⅱ. Variations of weak KAM theory 

Ⅱ.1. Weak KAM theory for coersive Hamiltonian systems 

We give the definitions of superliniearity and coercivity of Hamiltonian below. Assume that M  is n -dimensional 
C manifold.  

[Definition](Superlinearity on compact set. [Fathi 2008], pp. 16) 

We say that a Hamiltonian RMTH *:  is superlinear above compact subsets if for every compact sbset MB  , 
and any 0K , we can find a constant R),( KBC  such that 

):),((),,(||||),( * BxMTpxKBCpKpxH x  , 

where x||||  is the norm on MTx
*  induced from the Riemannian metric of M . 

(Remark) Hamiltonian RMTH *:  is superlinear above compact subsets if and only if for every compact sbset 

MB   and any Bx , 
x

p
p

pxH
x ||||

),(
lim |||| . Here limit is uniform for Bx  (See [Fathi 2008], pp. 12, 

Exercise 1.3.4). 
[Definition](Coercivity on compact set. [Fathi 2008], pp. 232)  

We say that a Hamiltonian RMTH *:  is coercivie above compact subsets if for any compact sbset MB   
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and any Rc , }),(,|),{( *
cpxHBxMTpx   is compact. 

(Remark 1) Hamiltonian RMTH *:  is coercivie above compact subsets if and only if for every compact sbset 
MK   and any Kx ,  ),(lim |||| pxH

xp  holds. Here limit is uniform for Kx  (See [Fathi 2008], pp. 

232).  

(Remark 2)(a[Wang-Yan 2014]) For )();,( 1
xVxCV aRT

  we set 

)(1),(;: 211* xVppxTH  aRRTT . 

Then H  satisfies coercivity but do not satisfy superlinearity.  
In this theory, we clarify existence of weak KAM solutions of stationary Hamilton-Jacobi equations and that 

viscosity solutions of evolutionary Hamilton-Jacobi equations converge to stable state uniformly in space with constatnt 
velocity. Moreover we clarify aymtotic Lipschitz regularity of viscosity solutions and research the properties of effective 
Hamiltonian systematically that is proposed in the periodic hogenization of Hamilton-Jacobi equations. 

Weak KAM theory for coercive Hamiltonian systems contains following themes: 

• Weak KAM aspects of convex Hamilton-Jacobi equations with Neumann type boundary conditions (see [Ishii 

2009]). 

• Weak KAM theory without superlinearity (see a[Wang-Yan 2014]). 

• Random homogenization of coercive Hamilton-Jacobi equations in 1d (see [Gao 2016]). 

 

Ⅱ.2. Weak KAM theory on non-compact finite-dimensional manifolds 

In the theory, we compose the weak KAM solutions of Hamilton-Jacobi equation cudxH x ),( concerned with 

Hamiltonian RMTH *: on non-compact finite-dimensional manifold M  and characterize the set of weak KAM 
solutions based on Aubry set.   

Weak KAM theory on non-compact finite-dimensional manifolds contains following themes: 

• Weak KAM theorem on non compact manifolds (see [Fathi-Maderna 2007]). 

• Weak KAM methods and ergodic optimal problems for countable Markov shifts (see  [Bissacot-Garibaldi 2010]). 

• Optimal transportation on non-compact manifolds. (see [Fathi-Figalli 2010]). 
 

Ⅱ.3. Weak KAM theory for non-convex Hamiltonian systems 

Fisrst of all, we give the concept of quasi-convex functions. 
[Definition](Quasi-conveity. [Fathi 2008], pp. 28) Let us EC  is convex subset in linear space E  and 

RCf : . We say that f  is quasi-convex if for any Rt , ]),((1 tf   is convex. 
Following properties hold for quasi-convex functions: 
[Proposition]([Fathi 2008], pp. 28, Proposition 1.5.2)   

Let RCf :  be a function defined on the convex subset C  of the linear space E . 

1) The function f  is quasi-convex if and only if for any Cyx ,  and any ]1,0[ , 

))(),(max{))1(( yfxfyxf   . 

2) If f  is quasi-convex then for every Cxx n  ,,1  and every 

]1,0[,,1  n , with 1
1




n

i

i , we have 

)(max)(
1

1
i

ni

n

i

ii xfxf




 . □ 

In weak KAM theory for non-convex Hamiltonian systems, we generalize the results of weak KAM theory that was 
developed under the assumption Hamiltonian is convex with momentums to the case that Hamiltonian is quasi-convex 
with momentums. Especially we research the existence of weak KAM solutions, the large time bihaviors of solutions of 
evolutionary Hamilton-Jacobi equations, the generalization of Mather measure, the properties of effective Hamiltonian, 
and stochastic homogenization. 

Weak KAM theory for non-convex Hamiltonian systems contains following themes: 

• A PDE approach to large-time asymtotics for boundary-vallue problems for nonconvex Hamilton-Jacobi eqatioons 
(see [Barles-Mitake 2010]).   



 9

• Comparison principle for unbounded visicosity solutions of degenerate elliptic PDEs (see [Koike-Ley 2010]). 

• Aubry-Mather theory in the nonconvex setting (see [Fathi-Siconolfi 2005], [Cagnetti-Goems- 
Tran 2011]). 

• Envelopes and nonconvex Hamilton-Jacobi equations (see [Evans 2014]). 

• Minimax formula of the additive eigenvalue for quasiconvex Hamiltonians (see [Nakayasu 2014]). 

• The selection problem for discounted Hamilton-Jacobi equations in the case of non-convex cases (see 
[Gomes-Mitake-Tran 2017]). 

• Min-max formulas and properties of nonconvex effective Hamiltonians (see [Qian-Tran-Yu 2017]). 

• Stochastic homogenization of nonconvex Hamilton-Jacobi equations (see [Ziliotto 2017]). 
 
Ⅱ.4. Research on weak KAM theory for contact Hamiltonian systems 

Firstly we define the concept of contact Hamiltonian, based on a[Wang-Wang-Yan 2019]. 
[Definition]([MSJ, 2007], pp. 719) 

Asumme that Nrnm ,, satisfy rnm  . Let NM ,  are m -dimmensional manifold and C manifold, n

-dimensional C manifold respectively and NM :  is C surjective. We say that ),,( NMF  is fibered 

manifold and map NM :  is projection map of the fibered manifold F  if for any Mx , the tangent map 
NTMTT xxx )(:    is surjective.   

We say that map MNUf :  from open set U  of N  to M  is section of fibered manifold 

),,( NMF  if )(,))(( Uxxxf o .    

There exit coordinate system ),,( 1 nxx   of N  and coordinate system of M  ),,,,,( 11 rn yyxx   such that 

  is represented with the coordinate systems as follows 
),,(),,,,,(: 111 nrn xxyyxx  a . 

Then section MNUf : of ),,( NMF  is represented by the set ))(,),(( 1 xfxf r  of r  functions with 

),,( 1 nxxx  . Suppose that MNUf :  and NMVg : are section of  ),,( NMF  and 

VbUa  , . We say that ),( af  and ),( bg  are equivalletnt if 

1) )()(, bgafba  , 

2) every first-order partial derivatives at point a  for each components jj gf ,  of the representation of f  and 

g  by the coordinate systems coincide. This relation becomes an equivalent relation in the set of the pairs of section of 

),,( NMF  and the point belonging to the domain of the section. We say the set of the equivalent classes is bundle 

of 1-jets and denote the bundle of 1-jets by ),,(11 NMJJ  . We denote the equilivallent class that ),( af  defined by 

fja
1 . 

We define the function i
ap  on 1J  by 

)1,1,1;,,()())(( 1
nirnipyxa

x
fjp

i
ai

i
a

i
a 




  . 

Then 

)1,1,1;,,( nirnipyx
i
ai    

becomes a coordinate system of 1J .    

We denote the manifold of 1-jets of function on M  by ),(1 RMJ . The standard contact structure on M  is 

1-form pdxdu  . ),(1
RMJ  has natural contact structure   that is difined globally by the Puff equation 0 . 

Thus  Ker . The pair )),,(( 1 RMJ  is a contact manifold. There exists canonical diffeomorphism between 

),(1
RMJ  and RMT * . Thus the pair ),( * RMT  is also a contact manifold. We call rC function )2( r  

RR MTH *:  the contact Hamiltonian. The equation of contact flow defined by H  in local coordinate system is 
given by   
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),,),((

.),,(),,(

),,(),,(

),,,(

* R




































uMTpx

puxHpux
p

H
u

ppux
u

H
pux

p

H
p

pux
p

H
x

&

&

&

 

In the research of weak KAM theory for contact Hamiltonian systems, we generalize the fundamental results of 
Aubry-Mather theory and weak KAM theory to the case of the contact Hsmiltonian systems.  

Weak KAM theory for contact Hamiltonian systems contains following themes: 

• Variational principle for contact Hamiltonian systems and its applications (see [Wang-Wang-Yan 2017], 
[Wang-Yan 2019], b[Wang-Wang-Yan 2019]). 

• Aubry-Mather and weak KAM theories for contact Hamiltonian systems (see a[Wang-Wang-Yan 2018], 
b[Wang-Wang-Yan 2018], a[Wang-Wang-Yan 2019]). 

• Herglotz’ generalized variational principle and contact type Hamilton-Jacobi equations (see a[Cannarsa, 2019]). 

• On the vanishing contact structure for viscosity solutions of contact type Hamilton-Jacobi equations (see 
[Zhao-Cheng 2018]). 
 

Ⅱ.5. Weak KAM theory for conformally symplectic systems 

We define the concept of conformally symplectic system first. Let M  is n -dimensional C manidold. We let 

)(MC
  denote the linear space of all C functions on M  and )(MX  denote the linear space of all C vector 

fields on M .  

[Definition] Let )(MX X . We define C function fLX  on M  by 

)()())(( xXTfxfLX  . 

We call C function fLX  the Lie-derivative of f  with vector field X .  

(Remark) Since  

))(())(())((
00

xXTfx
dt

d
Tfxf

dt

d

t

t

t

t 


 , 

we have 

0

))(()(



t

tX xf
dt

d
xfL  .                              (*) 

[Proposition 1] For any )(, 21 MCff
  and any R21,  , we have 

22112211 )( fLfLffL XXX   . 

(Example) Let nM R
o
  and nxx ,,1   is a coordinate of n

R . Then we have 

f
x

xX
x

f
xXxXxfxXxDfxfL

n

i i
i

n

i i
iX ))(())(()()()()())((

11

 







 . 

Therefore we can consider map )()(: MCMCLX
   as a first-order differential operator. If we use chart of 

manifold, then we can also consider the map )()(: MCMCLX
   as a first-order differential operatpr for general n

-dimensional C manidold M . 

[Definition] ))(),((1 MCMC L  denote the linear space of all first-order differential operators from )(MC  to 

)(MC
 .  

[Proposition 2］Map ))(),(()(: 1 MCMCMLX X
 LXa  is bijective. 

(Proof) See [Arnold 1989]. 

[Proposition 3］If )(, MYX X , then YXXY LLLL   is a first-order differential operator from )(MC  to 

)(MC
 .  

(Proof) We prove the proposition in the case of nM R
o
 . If consider (*), then for any )( nCf R , we have  
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 
  













































n

ji ji
ji

ji

j
i

n

i

n

j j
i

i
iXY

xx

f
XY

x

f

x

X
Yf

x
xX

x
xYfLL

1,

2

1 1

)()( . 

Therefore we obtain 


 





















n

ji ji

j
i

i

j
iYXXY

x

f

x

Y
X

x

X
YfLLLL

1,

)( . □ 

［Definition］Suppose that )(,, MZYX X . If YXXYZ LLLLL  , then the vector field Z is  called the 

Poisson bracket of X  and Y  and is denoted by ],[ YX . So 

YXXYYX LLLLL ],[ . 

[Definition] Let ),,( 1 nxx L is a local coordinate of n -dimensional C manifold M  and 

),,,,,( 11 nn ppxx LL is a local coordinate of cotangent bundle MT*  of M . Then 



n

i

ii dpdx

1

  define a 

sympletic form of MT* .   is called the standard symplectic structure on MT* .  

[Definition] Suppose that   is differneltial 2-form on n -dimensional C manifold M  and X is C vector 
field on M . Then XL  differneltial 2-form on M  by 

))(,(]),,[,()],,([)),((),)(( 2121212121 MXXXXXXXXXXXXXLX X  . 

The differneltial 2-form XL  is called Lie erivative of   with vector field X . 

[Definition] Suppose that   is standard symplectic structure of MT* and X  is C vector field on MT* . If 
there exists constant }0{\R  such that 

 XL , 

then X  is called the conformally symplectic vector field. 

Obviously the case of symplectic corresponds to the case of 0  that is limit case. □ 
Conformally symplectic system emerges in interesting situation such as physics, geometry, clelstial mechanics, 

economy, and transporting model et al. In the weak KAM theory for conformally symplectic systems, we research the 
analogy of weak KAM theory to the class of dissipertive system that is conformally symplectic system. Especially we 
research the analogy of Aubry-Mather theory. In thie research, we existence of Aubry-Mather set in conformally 
symplectic systems, the structure of Aubry-Mather set and analyze the dynamical meaning of Aubry-Mather set and 
research the role of Aubry-Mather set in driving asymptotic dynamics of the system and action-minimizing property, 
attractiveness, and repelling property of Aubry-Mather set.  

This theory can be considered as a generalization of the previous results on Aubry-Mather sets in the dissipative 
context to conformally symplectic flows on any compact manifold. And this theory is mostly focused in understanding 
what happens after these invariant Lagrangian submanifolds stop to exist or, more generally, what can be said about the 
dynamics and the invariant sets of a dissipative system(the above are quoted from [Marò-Sorrentino 2016]). 

Weak KAM theory for conformally symplectic systems contains following themes: 

• Periodic orbits for dissipative twist maps (see [Casdagli 1987]). 

• Dynamical properties of diffeomorphisms of the annulus and of the torus (see [Calvez 2000]). 

• KAM theory for conformally symplectic systems (see a[Calleja, 2013]). 
• Local behavior near quasi-periodic solutions of conformally symplectic systems (see b[Calleja, 2013]). 
• Aubry-Mather theory for conformally symplectic systems (see [Marò-Sorrentino 2016]). 
 

Ⅱ.6. Weak KAM theory for Hamiltonian systems depending on unknown functions. 

In this theory, we extend Fathi’s weak KAM theory to the case of the Hamiltonian H  depends on unknown 
function like ),,( puxHH  . We establish a variation principle for the initial value problems of evolutionary 

Hamilton-Jacobi equations in which the Hamiltonian depends on unknown function explicitly and clarify the internal 
connection between the viscosity solutions and the minimizers. Moreover we clarify the convergence of viscosity 
solutions of evolutionary Hamilton-Jacobi equations that satisfy the initial condition to the weak KAM solutions of 
stationary Hamilton-Jacobi equations.   

Weak KAM theory for Hamiltonian systems depending on unknown functions contains following themes: 

• Solution semi-group under proper conditions (see [Su-Wang-Yan 2014]). 

• Fundamental solution under Lipschitz conditions (see b[Wang-Yan 2014]). 

• Variational principle under Osgood conditions (see c[Wang-Yan 2014]). 
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• Convergence of Lax-Oleinik semi-group for Hamiltonian systems depending on unknown functions (see 

([Su-Wang-Yan 2016]). 

• Weak KAM solutions of Hamilton-Jacobi equations with decreasing dependence on unknown functions (see 
[Wang, 2021]). 

 

Ⅱ.7. Infinite-dimensional weak KAM theory  

In this theory, for a class of Hamiltonians defined on the cotangent bundle of )1,0(2L -infinite dimensional torus 

T  we confirm existence of viscosity solutions for Hanioton-Jacobi equations on T . Thus we prove weak KAM 

theorem on )1,0(2
L -infinite dimensional torus T . 

Infinite dimensional weak KAM theory contains following themes: 

• Global regular solutions of second order Hamilton-Jacobi equations in Hilbert spaces with locally Lipschitz 

nonlinearities (see [Gozzi 1996]). 

• Gradient flows in metric spaces and the Wasserstein spaces of probability (see [Ambrosio, 2005]). 

• Hamilton-Jacobi equations in the Wasserstein space (see [Gangbo, 2008]). 

• Weak KAM theorem for the nonlinear Vlasov equation (see [Gangbo-Tudorascu 2009]). 

• Weak KAM theory for infinite-dimensional Lagrangians systems (see a[Gangbo-Tudorascu 2010], 

b[Gangbo-Tudorascu 2010] , [Shi-Yang 2016]). 

• Extension of the weak KAM theory to the Wasserstein torus (see a[Gangbo-Tudorascu 2012], [Gangbo-Tudorascu 
2014]). 

• Minimizers of calculus of variations problems in Hilbert spaces (see  [Gomes-Nurbekyan 2015]). 

• Infinite-dimensional weak KAM theory via random variables (see [Gomes-Nurbekyan 2016]). 

• Differentiability in the Wasserstein space and well-posedness for Hamilton-Jacobi equations (see 
[Gangbo-Tudorascu 2018]). 

Ⅱ.8. Stochasitic weak KAM theory 

In this theory, we research stochastic analogy of Aubry-Mather theory for the case that deterministic control 
problems are replaced to diffusion control problems. And we research the existence and uniqueniss of invariant mesure 
for Burgers equation with random forcing oscillating term, and asymptotic properties of the invariant measure. On the 
other hand, we research exit points problem from certain domain of stochastic process that is given by perturbation of 
dynamical system according to addition of small noise by the qualitative analysis of viscosity solutions of 
Hamilton-Jacobi equations with Neumann boundary condition.    

Stochasitic weak KAM theory contains following themes: 

• Invariant measures for Burgers equation with stochastic forcing (see [E-Sinai, 2000]). 

• Stochastic Aubry-Mather theory (see [Iturriaga, 2005]). 

• Weak KAM theory in the stationary ergodic setting (see [Davini-Siconolfi 2012], [Davini-Siconolfi 2014]). 

• Randomly perturbed dynamical systems and Aubry-Mather theory (see [Siconolfi, 2009]). 

• Stochastic homogenization of a nonconvex Hamilton-Jacobi equation (see [Armstrong-Tran 
-Yu 2013]). 
 

Ⅱ.9. Discrete weak KAM theory 

In the discrete weak KAM theory, we consider continuous function R XXc :  that is called as cost function 
defiend on a distance space X  instead of Lagrangian in weak KAM theory. We say that function RXu :  is the 
–subsolution to cost function c  if there exists R  such that 
     ),()()(,, yxcxuyuXyx . 

Then we call u  is dominated by c , which we denote by cu p . We say that the smallest constant   that 
there exists  -subslution is the critical cinstant, which we denote by ]0[ . And we define discrete Lax-Oleinik 

semi-group for cost function c  uTc
  and uTc

  by 

)],()([sup)( xycyuxuT
Xy

c 


 . 
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A continuous function RXu :  that satisfies uuTc  ]0[  is called a negative weak KAM solution for cost 

function c . On the other hand a continuous function RXu :  that satisfies uuTc  ]0[  is called a positive weak 

KAM solution for cost function c .        
In discrete weak KAM theory, we perform the research to transfer the various results concerned with subsolution, 

critical subsolution, weak KAM solution, Lax-Oleinik semi-group, Aubry set,   function of Mather, Mañé potential, 
and barrier function etc in weak KAM theory that was developed for Lagrangian continuous dynamical systems to the 
case of discrete setting in which we consider continuous function R XXc :  called the cost function defined on 
suitable distance space X . In the discrete weak KAM theory, we prove existence of negative weak KAM solution and 
positive weak KAM solution for cost function under the assumtions of uniform superlinarity and uniform boundedness 

and we research existence of 1,1C  critical subsolution and approximate problem of effective Hamiltonian by discrete 
weak KAM solution etc. 

Discrete weak KAM theory contains following themes: 

• Weak KAM pairs and Monge-Kantorovich duality (see a[Bernard-Buffoni 2008]). 

• Minimizing orbits in the discrete Aubry-Mather model. [Garibaldi 2009] 

• Existence of 1,1C critical subsolutions in discrete weak KAM theory (see [Zavidovique 2010]). 

• Strict sub-solutions and Mañé potential in discrete weak KAM theory (see [Zavidovique 2012]). 

• [Bernard-Zavidovique 2013]: Regularization of subsolutions in discrete weak KAM theory (see 

[Bernard-Zavidovique 2013]). 

• Convergence of discrete Aubry-Mather model in the continuous limit (see [Su-Thieullen 2015]). 
 
Ⅱ.10. Quantum weak KAM theory  

In this theory, we find quantum analogy of the minimizing principle of Mather for Lagrangian dynamial systems 
that means understanding the connection between solutions of Shrödinger equations when we send Plank constant to 
zero, thus in the semi-classical limit 0h (here h  denotes Plank constant). And we research connection between 
spectrum of Schrödinger operator and effective Hamiltonian in weak KAM theory. 

Quantum weak KAM theory contains following themes: 

• Effective Hamiltonians and quantum states (see [Evans 2001]). 

• Quantum analog of Weak KAM theory (see b[Evans 2004]). 

• Wigner measures and the semi-classical limit to the Aubry-Mather measure (see [Gomes, 2011]). 

• Coherent states and quantum asymptotic features by weak KAM theory (see [Cardin, 2014]). 

• Schrödinger spectra and the effective Hamiltonian of weak KAM theory on the flat torus (see  [Zanelli 2016]). 

• Weak KAM approach to the periodic stationary Hartree equation (see [Zanelli, 2021]). 
 

Ⅱ.11. Weak KAM theory for weakely coupled systems  

We call  

),,1,),0(),((,0),()(),(
1

mixtxtuxbuDxH
t

u N
m

j

jijixi
i L



 


T       (EHJ) 

          ))((),,1(),(),0( 00 N
iii Lipumixuxu T L  

the evolutionary type of weakely coupled system of Hamilton-Jacobi equations. The other hand we call  

),,,1,(,)()(),(
1

RT 


cmixcxuxbuDxH N
m

j

jijixi L             (SHJ) 

the stationary type of weakely coupled system of Hamilton-Jacobi equations. Here the assumptions for functions and 
coefficients are as follows: 

1) Assumptions for Hamiltonian. For mi ,,1     

(H1) RRT  NN
iH :  is continuous.  

(H2) for any Mx , ),( pxHp ia  is strong convex on NR .  

(H3) There are exist functions RR :,   such that 

)),((|),(|),(|)(| N
i pxppxHp T  . 
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2) Assumption for combination matrix 
① )(xBx a  is continuous. 

② }),,1{(,0),(,0,0
1

mibijbb
m

j

ijijii  


. 

③ )(xB :non-degenerate 

















),,1(,0
1

mib

m

j

ij

def
. 

④ )(xB : irreducible 







 0:,},,,1{:},,1{ ijbjimm IIII

def
. 

In the Weak KAM theory for weakely coupled systems, we research for generalized weak KAM type theorem for 
solutions of weakely coupled system of Hamilton-Jacobi equations and Aubry set of weakely coupled system of 
Hamilton-Jacobi equations.  

Moreover we research large time behavior of viscosity solutions of weakely coupled system of Hamilton-Jacobi 
equations.  

Weak KAM theory for weakely coupled system contains following themes: 
• Comparison results for weakly coupled systems of eikonal equations (see [Camilli, 2008]).  
• Degenerate equations and weakly coupled systems (see [Cagnetti, 2012]). 
• Large time behavior of weakly coupled systems of Hamilton-Jacobi equations (see [Cagnetti, 2012], [Camilli, 

2012] , [Mitake-Tran 2012], [Mitake-Tran 2014]). 
• Aubry-Mather theory for weakly coupled systems of Hamilton-Jacobi equations (see [Davini-Zavidovique 2012], 

[Zavidovique, 2016]). 
• Adjoint methods for obstacle problems and weakly coupled systems of PDE (see [Cagnetti-Gomes-Tran 2013]).  
• Weak KAM theory for a weakly coupled system of Hamilton-Jacobi equations (see [Figalli-Goems, 2016]). 
• Lagrangian appraoch to weakely coupled Hamilton-Jacobi systems (see [Mitake, 2016]). 

 
Ⅲ. Applications of weak KAM theory 

Ⅲ.1. Large time behavior of evolutionary Hamilton-Jacobii equations. 

In the theory, we research asymtotic behavior of viscosity solutions of the initial value problem for evolutionary 
Hamilton-Jacobi equation 

0),(  DuxHut , 
asymtotic behavior of viscosity solutions of periodic first-order Hamilton-Javobi equation with space dependence, for 
asymptotic behavior for a class of weakly coupled system of Hamilton-Jacobi equations, asymptotic behavior of mean 
field game equation, asymptotic behavior of solutions of evolutionary Hamilton-Jacobi equations related to optimal 
switching problems, aymtotic behavior of weakely coupled systems of fully nonlinear parabolic linear equations, 
asymptotic behavior of solutions of obstruction problems for degenerate viscosity Hamilton-Jacobi equations, asymptotic 
behavior of solutions of time-periodic Hamilton-Jacobi equations that satisfy Dirichlet boundary conditions, and 
asymptotic behavior of viscosity solutions of evolutionary Hamilton-Jacobi equations in which Hamiltonian depends on 
inknown function etc. 

Theory on large time behavior of Hamilton-Jacobi equations contains following themes: 
• Regularity and large time behavior of solutions of a conservation law without convexity (see [Dafermos 1985]). 
• Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations (see 

[Barles-Souganidis 2001]). 
• Convergence to steady states or periodic solutions in Hamilton-Jacobi equations (see [Roquejoffre 2001]). 
• A generalized dynamical approach to the large time behavior of solutions of Hamilton-Jacobi equations (see 

[Davini-Siconolfi 2006]). 
• Asymptotic solutions of Hamilton-Jacobi equations in Euclidean n  space (see a[Fujita-Ishii- 

Loreti 2006] , [Fujita 2007] , [Fujita-Uchiyama 2007], [Ishii 2008]). 
• Asymtotic solutions of viscous Hamilton-Jacobi equations with Ornstein-Uhlenbeck oprator (see 

b[Fujita-Ishii-Loreti 2006]). 
• Large time behavior of solutions of initial-boundary value problems for Hamilton-Jacobi equations (see [Mitake 

2008], [Mitake 2009]). 
• Gradient bounds for nonlinear degenerate parabolic equations and large time behavior of systems (see 

[Leya-Nguyen 2016]). 
• Large-time behavior for obstacle problems for degenerate viscous Hamilton-Jacobi equations (see [Mitake-Tran 

2013]).  
• Uniqueness sets of additive eigenvalue problems and applications (see [Mitake-Tran 2018]). 
• Long-time behavior of solutions of Hamilton-Jacobi equations with convex and coercive Hamiltonians (see 

[Ichihara-Ishii 2009]). 
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Ⅲ.2. Homogenization of Hamilton-Jacobi equations 

In this theory, we research the convergence problems of solutions in Hamilton-Jacobi equations involving parameter 
when parameter goes to certain value. And we also research the calculation method of effective Hamiltonian and the 
qualitative properties of effective Hamiltonian. Let us consider classical example of the research related to 

homogenization by [Lions-Crrandall 1982]. The fundamental result is that for 0T  viscosity solution ),( txu
  of 

initial problem of evolutionary Hamilton-Jacobi equation with Hamiltonian ),(),(;: pxHpxH NN
aRRR   

which is continuous and 1-periodic with x  and superliniar with p  

)),0(),((,0),/( 


 NtxDuxH
t

u
R



                    (1) 

)();(),()0,( 00
NN BUCuxxuxu RR                        (2) 

converges to solution which satisfy initial condition (2) ),( txu  of evolutionary Hamilton-Jacobi equation   

)),0(),((,0)( 

 N

txDuH
t

u
R                         (3) 

on ],0[ T
N R  in function splace ]),0[( TBUC

N R  when 0 . Here function )( pH  is so-colled effective 

Hamiltonian and is determined as follows: For any Np R , there exists R)( pH  such that there exists periodic 

continuous solution )(),( N
yy Rv  of Hamilton-Jacobi equation 

)(),( pHDpyH y  v .                             (4)  

After the above classical research the homogenization problems have been researched in various situations and for 
various types of Hamilton-Jacobi equations.  

The theory on homogenization of Hamilton-Jacobi equations contains following themes: 
• Fundamental of homogenizations of Hamilton-Jacobi equations (see a[Lions, 1987]). 
• Homogenization of Hamilton-Jacobi equations in the Heisenberg group (see [Birindelli- Wigniolle 2003]). 
• Perturbation problems in homogenization of Hamilton-Jacobi equations (see [Cardaliaguet, 2018]). 
• Periodic homogenisation of nonlinear PDEs (see [Evans 1992], [Concordel 1996], [Concordel 1997], [Lions, 

2009]). 
• Computing the effective Hamiltonian using a varational approach (see [Gomes, 2004]). 
• Multiscale problems and homogenization for second-order Hamilton-Jacobi equations (see [Alvarez, 2007]). 
• Homogenization of metric Hamilton-Jacobi equations (see [Oberman, 2009]). 
• Inverse problems in periodic homogenization of Hamilton-Jacobi equations (see [Luo-Tran-Yu 2016]). 
• Exact and approximate correctors for stochastic Hamiltonians (see b[Davini-Siconolfi 2009]).  
• Approximation for effective Hamiltonians for homogenization of Hamilton-Jacobi equations (see [Luo, 2011]). 
• Stochastic homogenization of Hamilton-Jacobi equations (see [Souganidis, 1999], Rezakhanlou, 2000], [Lions, 

2003], [Lions-Souganidis 2010], a[Armstrong, 2012], b[Armstrong, 2012], [Armstrong-Tran-Yu 2014], 
[Armstrong-Cardaliaguet 2016] , [Gao 2016]). 

• Homogenization and non-homogenization of nonconvex Hamilton-Jacobi equations (see [Feldman, 2016]).  
 
Ⅲ.3. Weak KAM theory related to optimal transportation problems 

Let us explain the concept of optima transportation based on [Villani 2003], pp. 1-2, first. 
Assume that we are given a pile of sand (say), and a hole that we have to completely fill up with the sand.  
Obviously, the pile and the hole must have the same volume. Let us normalize the mass of the pile to 1. We shall 

model both the pile and the hole by probability measures , , difined respectively on some measure spaces X  and 

Y . Whenever A  and B  are measurable subset of X  and Y  respectively, )(A  gives a measure of how much 

sand is located inside A ; and )(B  of how much sand can be piled in B .  

Moving the sand around needs some effort, which is modeled by a measurable cost function defined on YX  . 
Informally, ),( yxc  tells how much it costs to transport one unit of mass from lacation x  to location y . It is natural to 

assume at least that c  is measurable and nonnegative. One should not a priori exclude thd possibility that c  thakes 
infinite values, and so c  should be a mesurable map from YX   to }{UR .  
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Figure 1. The mass transportation problem 

 
The central question in optimal transportation problem is the following 
Basic problem: How to realize the transportation at minimal cost ? 
Before studying this question, we have to make clear what a way of transportation, or a transference plan, is. We 

shall model transference plans by proberbility measures   on the product space YX  . Informally, ),( yxd  

measures the amount of mass transferred from location x  to location y . We do not a priori exclude the possibility that 

some mass located at point x  may be split into several parts (several possible destination y ’s). For a transference plan 

)( YXP   to be admissible, it is of course necessary that all the mass taken from point x  coincide with )(xd , 

and that all the mass transferred to y  coincide with )(yd . This means   

)(),(),(),( ydyxdxdyxd
XY

   . 

More rigorously, we require that 
)()(),()( BBXAYA                          (1) 

For all measurable subsets A of X  and B  of Y . 
Those probability measures   satisfy (1) will be the admissible transference plans. We shall denote the set of all 

such probability measures by  
;)({),( YXP   (1) holds for all measurable BA, }. 

 We now have a clear mathematical definition of our basic problem. In this form, it is known as 
Kantorovich’s optimal transportations problems: 

Minimize  


YX
yxdyxcI ),(),(][   for ),(   .□  

In weak KAM theory related to optimal transportation problems, we research the connection between optimal 
transportation problem and Mather theory and between optimal transportation problem and weak KAM theory. 

The theory related to optimal transportation problems contains following themes: 
• Fundamental theory of the optimal transportation problems (see [Gangbo 1997], [Villani 2003], [Ambrosio 2003]). 
• Weak KAM pairs and Monge-Kantorovich duality (see a[Bernard-Buffoni 2007]). 
• Optimal mass transportation and Mather theory (see b[Bernard-Buffoni 2007]). 
• Continuity of optimal control costs and weak KAM theory (see [Agrachev, 2010]). 
• Optimal transportation on non-compact manifolds (see [Fathi-Figalli 2010]). 
• Logarithmic divergences from optimal transport and Rényi geometry (see [Wong  2018]). 
 
Ⅲ.4. Weak KAM theory related to optimal switching problems  

Optimal switching problems are the problems finding the orbits minimizing action functional as the orbits of system 
in which the dynamics change by the switching between different setting or different mode. In the theory on weak KAM 
theory related to optimal switching problems, we extend many concdpts of weak KAM theory to the case that optimal 
switching mode is considered and consider the variation problems for the solutions of the weakely coupled system of 
Hamilton-Jacobi equations and extend weak KAM theory and Aubry-Mather theory to optimal switching problems. And 
we research existence and regurality of action minimizer, large time behavior of solutions of non-stationary systems, and 
asymptotic limit of genelarized Lax-Oleinik semi-gorup.     

The theory on optimal switching problems contains following themes: 
• Optimal stochastic switching and the Dirichlet problem for the Bellman equation (see [Evans-Friedman 1979]). 
• Optimal switching control of diffusion processes and associated implicit variational problems (see [Belbas 1981]). 
• System of first order quasi-variational inequalities connected with optimal switching problem (see [Dolcetta, 

1983]).  
• Optimal switching for ordinary differential equations (see [Dolcetta-Evans 1984]). 
• Weak KAM and Aubry-Mather theories in an optimal switching setting (see [Farias 2013]). 
 

Ⅲ.5. Weak KAM theory related to optimal control problems  
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In this theory, we prove the version of weak KAM theorem concerned with optimal control of control systems and 
research Aubry-Mather problems corresponding to the systems. And we research the asymptotic properties of the 
corresponding value functions in singular perturbation optimal control problems with variables depending to parameter 
  when   goes to 0 . Moreover we research the convergence of appropriate limit equation involving effective 
Hamiltonian to subsolution and supersolution in the sense of weak semilimit. This research is performed using some 
tools of weak KAM theory, especially the concept of Aubry set.       

Weak KAM theory related to the optimal control problem contains following themes: 
• Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations (see [Bardi, 1997]) 

• Viscosity solutions and analysis in L  (see [Barron 1999]). 
• Pontryagin approximations for optimal design (see [Carlsson 2006]). 
• Stochastic optimal control under state constraints (see [Rutquist 2017]). 
• Optimal control for nonlinear descriptor systems (see [Sjöberg 2006]). 
• Continuity of optimal control costs and weak KAM theory (see [Agrachev, 2010]). 

Ⅲ.6. Mean field game   

Mean field game system denotes equilibrium arrangement in the game which has infinite number of players. In 
mean field game thoery we consider N -player Nash equilibrium for stochastic problem and establish “mean field” 
nonlinear partial differential equation when N  goes to infinity and moreover show that this nonlinear problem is 
well-posed essentially, thus that has unique solution.      

In mean field game thoery we develop an equivalent of weak KAM theory to mean field game. This allow for us to 
describe large time behavior of time-depending mean field game systems. Main resut is the existence of limit of value 
function when time goes to infinity. And we clarify the existence of mean field limit for ergodic constant related to 
corresponding Hamilton-Jacobi equation to mean field game.   

Mean field game theory contains following themes: 
• Fundamental theory of mean field games (see a[Lasry-Lions, 2006], b[Lasry-Lions, 2006], [Lasry-Lions 2007], 

[Lions 2008], [Cardaliaguet 2010], [Lions 2010], [Guéant-Lasry-Lions 2011]). 
• Discrete time, finite state space mean field games (see [Gomes, 2010]). 
• Mean field games and numerical methods for the planning problem (see [Achdou, 2012]). 
• A semi-discrete in time approximation for a model first order-finite horizon mean field game problem (see 

[Camilli-Silva 2012]). 
• Long time average of mean field games and weak KAM theory (see [Cardaliaguet, 2012], [Cardaliaguet 2013], 

[Cardaliaguet, 2013]). 
• Convergence of finite state mean-field games through  -convergence (see [Ferreira-Gomes 2014]). 

• Potential mean field game (see [Briani-Cardaliaguet 2018], b[Cardaliaguet, 2019], [Masoero 2019]). 
• Mean field games on networks (see [Camilli, 2015], [Cacace, 2016], [Camilli, 2016]). 
• Second order mean field games with degenerate diffusion and local coupling (see [Cardaliaguet, 2015]). 
• One-dimensional, forward-forward mean-field games with congestion (see [Gomes-Sedjro 2017]). 
• Probabilistic theory of mean field games (see [Carmona-Delarue 2018]). 
• Mean field games systems (see [Cardaliaguet-Graber 2015], [Cirant-Nurbekyan 2018], [Mészáros-Silva 2018]). 
• Existence of a solution to an equation arising from the theory of mean field games (see [Gangbo-Święch 2015]). 
• Existence of oscillating solutions in non-monotone mean-field games (see [Cirant 2019]). 
• Long time behavior of master equation in mean field game theory (see a[Cardaliaguet, 2019], c[Cardaliaguet, 

2019]). 
 

Ⅲ.7. Research on construction of smooth time functions on Lorentzian manifolds 

In this theory, we are concerned with the existence of smooth time functions on connected time-oriented Lorentzian 
manifolds. The problem is tackled in a more general abstract setting, namely in a manifold M  where is just defined a 
field of tangent convex cones MXXC )(  enjoying mild continuity properties.  

Under some conditions on its integral curves, we will construct a time function. The approach is based on the 
definition of an intrinsic length for curves indicating how a curve is far from being an integral trajectory of XC . We find 
connections with topics pertaining to Hamilton-Jacobi equations, and make use of tools and results issued from weak 
KAM theory. 

See [Fathi-Siconolfi 2012] for the detailed contents related to construction of smooth time functions on Lorentzian 
manifolds. 

 
Ⅲ.8. Inverse Lyapunov theorems 

See [Siconolfi-Terrone 2007] for inverse Lyapunov theorems. 
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3. Open problems in weak KAM theory 

We denote the conjectures, open problems, and the point at issues in each detailed research fields of weak KAM 
theory. They contain 17 of the points at the issue that are newly proposed in this paper. The 17 points we are newly 
proposed expressed as [Jong, 2023]. 

 
Ⅰ. Open problems related to fundamental problems of weak KAM theory 

[Problem Ⅰ.1-1]([Jong, 2023]) 
Generalize the theory related to Lax-Oleinik type operators of [Wang-Yan 2012] that was developed on compact 

manifold to the case of the time-periodic Lagrangian 
),,()1,,(),,,(),,(;: txLtxLtxLtxTML vvvv  aRR  

defined on finite-dimensional C manifold M .  

 

[Problem Ⅰ.1-2]([Jong, 2023]) 

In [Bernard 2012] Bernard proved the existence of weak KAM solution and 1,1C subsolution in the case that 

underlying manifold is nR .  

Problem: Prove the existence of weak KAM solution and 1,1C subsolution in the case that ㅕunderlying manifold 
is general finite-dimensional manifold. 
 

[Problem Ⅰ.2-1](a[Arnaud 2010], pp. 1669, Question 2) 

Does an example of an invariant curve with an irrational rotation number that is not 1C  exist? 
 
[Problem Ⅰ.2-2](a[Arnaud 2010], pp. 1671, Question 3) 

Are there examples of Tonelli Hamiltonians or twist maps that are 0C -integrable but not 1C -integrable? 
 

[Problem Ⅰ.2-3](a[Arnaud 2010], pp. 1672, Question 4) 

Do two twist maps f  and g  and two minimizing measures f  for f  and g  for g  exist, so that f  

and g  have the same support but are not equivalent (i.e. not mutually absolutely continuous)? 

 
[Problem Ⅰ.2-4](a[Arnaud 2010], pp. 1672, Question 5) 
Do there exist any minimizing measures with non zero Lyapunov exponents that are not uniformly hyperbolic? 
 
[Problem Ⅰ.2-5](a[Arnaud 2010], pp. 1672, Question 6) 

Do any examples of minimizing measures with zero Lyapunov exponents that are not supported in a 1C  curve 
exist? 
 

[Open Problem Ⅰ.3-1]([Soga 2016], pp. 31)   
The function H  is assumed to satisfy the following: 

(A1) 22 ,:),,( CptxH RRT   

(A2) 0ppH  

(A3) 
 ||

),,(
lim
|| p

ptxH

p
   

From (A1)-(A3) we obtain the Legendre transform ),,( txL  of ),,( txH , which is given by 

)},,({sup),,( ptxHptxL
p





R

. 

(A4) There exists 0  such that )1|(|||  LLx  . 
The regularity criterion of solutions to  

0),,(  xt uctxHu                               (1.1)   
and 

)(),,( chctxH xt  vv                             (1.2) 

under (A1)-(A4) remains an important open problem. Here )(, chc  are constants. 
 
[Problem Ⅰ.3-2]([Jong, 2023])   

In a[Bernard 2007], Bernard proved the 1,1C critical subsolution of Hamilton-Jacobi equations in the case that 
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underlying manifold is compact manifold.  

Problem: Prove the existence of 1,1C critical subsolution of Hamilton-Jacobi equations in the case that underlying 
manifold is finite-dimensional manifold. 

 

[Conjecture  Ⅰ.4-1]([Rifford 2013], pp. 16, Conhecture 8.1. Mañé’s Conjecture) 
),( gM  will be a smooth connected compact Riemannian manifold without boundary of dimension 2n .  

Following Mañé’s paper [Mañé 1996], given a Tonelli Hamiltonian RMTH *:  of kC (with 2k ) and an 

potential RMV :  of kC  (with 2k ), we define the Hamiltonian RMTHV
*:  by 

MTpxxVpxHpxHV
*),()(),(:),(  . 

Denote by )(MC
k  the set of kC  potentials on M  equipped with the kC  topology.  

The Mañé’s conjecture in kC  topology (with 2k ) can be stated as follows: 

For every Tonelli Hamiltonian RMTH *:  of kC  (with 2k ), there is a residual subset (i.e., a countable 

intersection of open and dense subsets) G  of )(MC
k  such that, for every GV , the Aubry set )(

~
VHA  of the 

Hamiltonian VH  is either an equilibrium point or a periodic orbit. □  
A natural way to attack the Mañé Conjecture in any dimension would be to prove first a density result, then a 

stability result. Namely, given an Tonelli Hamiltonian of class kC , first one could show that the set of potentials 

)(MCV k  such that )(
~

VHA  is either a hyperbolic equilibrium point or a hyperbolic periodic orbit is dense, and then 

prove that the latter property is open in kC  topology. The stability part is indeed contained in results obtained by 
Contreras and Iturriaga in [Contreras-Iturriaga 1999], so we can consider that the Mañé Conjecture reduces to the density 
part(the above was quoted from [Rifford 2013]).   

 

[Conjecture  Ⅰ.4-2]([Rifford 2013], pp. 16, Conhecture 8.2. Mañé’s density Conjecture) 

For every Tonelli Hamiltonian RMTH *:  of class (with 2k ) there exists a dense set D  in )(MC k  such 

that, for every DV , the Aubry set of VH  is either an equilibrium point or a periodic orbit. □  
In a series of papers in a[Figalli-Reffoed 2010] and b[Figalli-Reffoed 2010], Figalli and Refford made progress 

toward a proof of the Mañé Conjecture in 2C  topology. Their approach is based on a combination of thechniques 
combing from finite dimensional control theory and Hamilton-Jacobi theory, together with some of the ideas which were 

used to prove 1C -clossing lemmas for dynamical systems. The following result is a weak form of some of the results 
that they obtained in a[Figalli-Reffoed 2010] and b[Figalli-Reffoed 2010].    

[Theorem 8.3]([Rifford 2013], pp. 17) 

Let RMTH *:  be a Tonelli Hamiltonian of class kC  with 4k , and fix 0 . Assume that there is a 

critical subsolution which is of class 1kC . Then there exists a potential RMV : of class 1kC , with 2||||
C

V , 

such that ][][ HcHc V   and the Aubry set of VH  is either an equilibrium point or a periodic orbit. □ 

This result together with stability results by Contreas and Iturriaga [Contreras-Iturriaga 1999] shows that we can 

more or less consider that the Mañé Conjecture for Hamiltonian of class at least 4C  is equivalent to the: 
 

[Conjecture  Ⅰ.4-3]([Rifford 2013], pp. 17, Conjecture 8.4. Mañé’s regularity Conjecture) 

For every Tonelli Hamiltonian RMTH *:  of class kC , with 4k  there is a set )(4
MCD  which is 

dense in )(2 MC  (with respect to the 2C  topology) such that the following holds: For every DV , the Hamiltonian 

VH  admits a critical subsolution of class 5C . 

 

[Problem  Ⅰ.4-4](a[Arnaud 2010], pp. 1654, Question 1) 
Is there a means of distinguishing between the hyperbolic and the non hyperbolic Aubry or Aubry-Mather sets? Is 

there a means of seeing the Lyapunov exponents of a minimizing measure when knowing only the measure and not the 
dynamic? 
 

[Problem  Ⅰ.4-5]([Jong, 2023]) 
In b[Cannarsa, 2019], Cannarsa et al researched dynamical properties of generalized characteristic semi-flows 

related to Hamilton-Jacobi equation for mechanical Hamiltonian systems in the case that underlying manifold is n

-dimensional torus and they constructed connection between generalized characteristic semi-flow and  -limit set of 
projected Aubry set.  
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Problem: Genralize the results of b[Cannarsa, 2019] to the case that underlying manifold is compact manifold or 
finite-dimensional manifold or to the case of general Hamiltonian systems.   

 

[Open Problem  Ⅰ.5-1]([Evans 2005], pp. 150) 
Concordel in [Concordel 1996], [Concordel 1997] initiated the systematic study of the geometric properties of the 

effective Hamiltonian H , but many questions are still open.  

Consider, say, the basic example )(
2

||
),(

2

xW
p

xpH   and ask how the geometric properties of the periodic potential 

W  influence the geometric properties of H , and vice versa. For example, if we know that H  has a “flat spot” at its minimum, 

what does this imply about W ? 

It would be interesting to have some more careful numerical studies here, as for instance in [Gomes-Oberman 2004]. 
 

[Open Problem Ⅰ.5-2]([Evans 2005], pp. 151) 
It is, I think, very significant that the theory a[Lions, 1998] of Lions, Papanicolaou and Varadhan leads to the 

existence of solutions to the generalized eikonal equation  

)(),( PHxuDH x                                (E) 

even if the Hamiltonian H  is nonconvex in the momenta p : all that is really needed is the coercivity condition that 

 ),(lim || xpHp , uniformly for nx T . In this case it remains a major problem to interpret H  in terms of 

dynamics. 
  

[Open Problem Ⅰ.5-3]([Evans 2005], pp. 151) 
Fathi and Siconolfi [Fathi-Siconolfi 2005] have made great progress here, constructing much of the previously 

discussed theory under the hypothesis that ),( xpHp a be geometrically quasiconvex, meaning that for each real 

number   and nx T , the sublevel set }),(|{ xpHp  is convex. 

The case of Hamiltonians which are coercive, but nonconvex and nonquasiconvex in p , is completely open. 

 

[Problem Ⅰ.5-4]([Jong, 2023]) 
Evans in [Evans 2017] discovered various new integral identities and extended prior researches for the variational 

approximation in the case of the mechanical Hamiltonian )(||
2

1
),( 2 xWpxpH  .  

Problem: Generalize the results of [Evans 2017] to the case of more general Hamiltonian.  

 

[Problem Ⅰ.5-5]([Jong, 2023]) 
Evans in [Evans 2017] discovered various new integral identities for mechanical Hamiltonian 

)(||
2

1
),( 2

xWpxpH   and extended prior researches for the variational approximation in the case that underlying 

manifold is n -dimensional torus n
T .  

Problem: Generalize the results of [Evans 2017] to the case that underlying manifold is compact manifold or 
finite-dimensional manifold.  

 

[Problem Ⅰ.6-1]([Jong, 2023]) 
Generalize the results in b[Gomes 2002] that proved stability of viscosity solution and Mather set under the small 

perturbation of Hamiltonian on n -dimensional torus nT  to the case of the Hamiltonian on compact manifold or 
finite-dimensional manifold.  

  
[Problem Ⅰ.6-2]([Jong, 2023]) 
Generalize the results in [Chen-Zhou 2017] that gave perturbation estimation of weak KAM solution u  with 

parameter   for nealy integrable Tonelli Hamiltonian 

TRT  nntpqtpqHpHH ),,(),,,()( 10   

on n -dimensional torus nT  and proved stability of Mather set M
~

, Aubry set A
~

, Mañé set N
~

 and backword 

calibrated curve to the case of Hamiltonian on compact manifold or finite-dimensional manifold.   
 
[Conjecture Ⅰ.7.1]([Luo, 2011], pp. 13)  

Consider mechanical Hamiltonian 
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),(),(;: xpHxpH
nn

aRRR  , )()(),(
,1

xVppxaxpH

nji

jiij  


. 

Here RRRR  nn
ij Va :,:  is continuous and nT -periodic. And assume that )(xaij  satisfies the uniform strong 

convex condition 

)0;(,||)(|| 2

,1

2  


 n

nji

jiij xa R . 

Let us )(;: pHpH n
aRR   is effective Hamiltonian with Hamiltonian H . We define function RR nf :  by  

)(max||4)( 2
xVxxf

nx R
 . 

Suppose that nR  is an open bounded set and consider Hamilton-Jacobi equation 

0)0();}0{\(),()/,()(    uxxfxDuHHJa
n

R . 
Conjecture; Then following holds: 

Suppose that 1n , )(max)(
1

xVpH
x T

 , and u  is viscosity solution of Hamilton-Jacobi equation )(HJa . If 

there exists R0x  such that 

})({min)( 00 xpxuxpxu
x






R
, 

then 

)(|)()(| 0 OpHxf   
holds.  
 

[Open Problem Ⅰ.7-2]([Soga 2016], pp. 31-32) 

Let )(cu  is 2Z -periodic solution of Hamilton-Jacobi equation and )(c
u  is the solution of space-time-periodic 

scheme. Then an estimate of the error between )(cu  and )(cu  without the Diophantine condition or without the 

condition 1)(
Cu

c   also remains open. The latter is particularly interesting in the context of a rigorous treatment of 
numerical approximations of Aubry-Mather sets. 

 
[Conjecture Ⅰ-11-1]([Farias 2013], pp. 96, Conjecture 96) 
Motivated by a[Bernard 2007]'s results, we present the following conjecture. 
Given a subsolution u  of  

I


ijixxuxucxduxH ji
ij

ii
Mx

,0)}},,()()({max,))(,({max 0           (1.9) 

, there exists a subsolution v  such that, for every mode Ii , ),( iv  is in )(1,1
MC , at least when }2,1{I . 

 
[Open Problem Ⅰ-11-2]([Zavidovique, 2016], pp 13) 

Does there exist a 1C subsolution of weakly coupled system of stationary  Hamilton-Jacobi equations ? 
  
[Open Problem Ⅰ-11-3]([Zavidovique, 2016], pp. 14) 

Are subsolutions of weakly coupled system of stationary Hamilton-Jacobi equations differential on Aubry set ?  
 

Ⅱ. Open problems related variation of weak KAM theory   

[ProblemⅡ.1-1]([Qian-Tran-Yu 2017], pp. 13, Question 1) 

Let )( n
CH R  be a coercive and even Hamiltonian, and )( n

CV T  be a given potential. Let H  be the 

effective Hamiltonian associated with )()( pVpH  . Is it true that H  is also even? In general, we may ask what 

properties of the original Hamiltonian will be preserved under homogenization. 
 

[ProblemⅡ.1-2]([Jong, 2023])  
Fathi in [Fathi 2008] derived the results related to Lax-Oleinik semi-group, minimizing measure, regurality of weak 

KAM solution, and action minimizing invariant set under the assumption of superlinearity. 
Problem: Derive the results in [Fathi 2008] under the assumption of coercivity.   
 

[Open Problem Ⅱ.3-1]([Siconolfi 2006], pp. 1305)  

Something similar to the Aubry–Mather sets exists for nonconvex Hamiltonian this is still an important open 
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problem. 
 
[Conjecture Ⅱ.3-2]([Qian-Tran-Yu 2017], pp. 14, Conjecture 1) 
Assume that  
(H7) “ )),,0([ RC  satisfying that 


)(lim s

s
  and there exist Nm  and 

12100  mm ssss  such that   is strictly increasing in ),( 122 ii ss , and is strictly decreasing in 

),( 2212  ii ss . ” 

holds. Assume further that 0min)0(   . Let )()( ppH   for all np R , and )( nCV T  be a given potential 

function. Let H  be the effective Hamiltonian corresponding to )()( pVpH  . If  

)(maxminmax
,

ji
ji

mMVVVosc
nn

n 
TT

T
 

then the effective Hamiltonian H  is quasiconvex. 
 
 

[Conjecture Ⅱ.3-3]([Qian-Tran-Yu 2017], pp. 22, Conjecture 2) 
Assume that R),0[:  is continuous and coercivw. Set ),(|)(|),,( wxVpwxpH   for 

 nn
wxp RR),,( . Then H  is regularly homogenizable. 

 

[Problem Ⅱ.3-4]([Qian-Tran-Yu 2017], pp. 20, Question 2) 
Assume that 





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holds. Does there exist L  such that when LS  , H  is quasiconve? 
 

[Problem Ⅱ.3-5]([Qian-Tran-Yu 2017], pp. 25, Question 3) 
Let w  be a periodic seni-concave (or semi-convex) function. Denote D  as the collection of all regular gradients, 

that is, 
;)({ xDwD  w  is differentiable at x }. 

Is D  a connected set ? 
 

[Problem Ⅱ.3-6]([Qian-Tran-Yu 2017], pp 25, Question 4) 

Assume that 2n  and )(|},||,min{|)( 2
11 R pepeppH  for all 2

Rp , where )0,1(1 e . Does 

there exist 0L  such that, if 

LVessVessVosc 



),0(inf),0(sup2 

R
 

then VH   is regulaly homogenizable ? 

[Problem Ⅱ.4-1]([Jong, 2023]) 
Generalize the results related to Lax-Oleinik semi-group, minimizing measure, regularity of weak KAM solution, 

action-minimizing invariant set in [Fathi 2008] that was not treated in a[Wang-Wang-Yan 2019] to the case of contact 
Hamiltonian systesms. 

 

[Problem Ⅱ.4-2]([Jong, 2023]) 
Obtain the results on Aubry-Mather theory and weak KAM theory that was not obtained in [Fathi 2008] and also 

was not treated in a[Wang-Wang-Yan 2019] to the case of contact Hamiltonian systesms.  
 

[Problem Ⅱ.4-3]([Jong, 2023]) 

Establish the moderate increasing condition on the contact variable in [Wang-Wang-Yan 2019] more weakly and 

develop the theory in a[Wang-Wang-Yan 2019]. 
 

[Problem Ⅱ.4-4]([Jong, 2023]) 
In a[Wang-Wang-Yan 2019] Wang  et al generalized the fundamental results of Aubry-Mather theory and weak 

KAM theory for Hamiltonian sestems defined on compact manifold to the case of contact Hamiltonian systems defined 
on compact manifold.  

Problem: Generalize the results in a[Wang-Wang-Yan 2019] in the case of contact Hamiltonian system on 
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finite-dimensional manifold.     
 

[Problem Ⅱ.5-1]([Jong, 2023]) 
a[Calleja, 2013] developped KAM theory for conformally symplectic systems. 
Problem: Develop Aubry-Mather theory for conformally symplectic systems.   
 

[Problem Ⅱ.5-2]([Jong, 2023]) 
a[Calleja, 2013] developped KAM theory for conformally symplectic systems. 
Problem: Develop weak KAM theory for conformally symplectic systems.   
 

[Problem Ⅱ.7-1]([Jong, 2023])  

Let us consider Lagrangian on Hilbert space )(2 IL (where )1,0(I )  

)()(),(),(||||
2

1
),( 222

)(2 ILILNMNWNNML
IL

 . 

Here  

)( 12
TCW   and ))((,)(:)( 2

2

ILMzdzdzMMzWMW

I

  . 

Define Aubry set of the Lagrangian system with above Lagrangian and clarify the connection between the Aubry 
set and the corresponding Hamilton-Jacobi equation.   

Refer to [Fathi 2008] for the connections between Aubry set of Lagrangian system and viscosity solution of 
accociated Hamilton-Jacobi equation. 

 

[Problem Ⅱ.7-2]([Jong, 2023])    

a[Gangbo-Tudorascu 2010] proved weak KAM theorem for the Lagrangian system given by Lagrangian on Hilbert 

space )(2 IL  (here )1,0(I )  

)()(),(),(||||
2

1
),( 222

)(2 ILILNMNWNNML
IL

  

(here )( 12
TCW   and ))((,)(:)( 2

2

ILMzdzdzMMzWMW

I

  ). 

Problem: Prove weak KAM theorem for the Lagrangian system given by Lagrangian on general separable Hilbert 
space H  

HH ),(),(||||
2

1
),( 2

NMNWNNML . 

 

[Open Problem Ⅱ.8-1]([Davini-Siconolfi 2012], pp. 23, Open Question (1))  

This is the third of a series of papers we have devoted to the analysis of critical equations for stationary 
ergodic Hamiltonians, see a[Davini-Siconolfi 2008], b[Davini-Siconolfi 2008], by using the metric approach 
combined with some tools from Random Set Theory. This method has allowed to get a complete picture of the 
setup when the state variable space is 1–dimensional, as specified in the introduction, and, we think, has revealed to 
be effective also in the multidimensional setting, highlighting some interesting analogies with the compact case. 
However many crucial problems are still to be clarified. The more striking is: 

(1) In case of existence of an exact corrector, is the random Aubry set almost surely nonempty ? 
 
[Open Problem Ⅱ.8-2]([Davini-Siconolfi 2012], pp. 23, Open Question (1′))  

(1′) Is it impossible the simultaneous existence of an exact corrector and a global weakly strict admissible critical 
subsolution ? 

  
[Open Problem Ⅱ.8-3]([Davini-Siconolfi 2012], pp. 23, Open Question (2))  

In this respect, it should be helpful to strengthen  
“ [Theorem 5.3] Assume that fcc   or fcc   and )(fA  a.s. in  . Then there exists a critical 

admissible subsolution which is wekly strict in )(\ f
N AR  a.s. in  .” 

, as in periodic case. So we would also like to know: 
(2) If the Aubry set is a.s. empty, there exist strict global critical subsolutions? 

Can we find one of such subsolution which is, in addition, smooth? 
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[Open Problem Ⅱ.8-4]([Davini-Siconolfi 2012], pp. 23-24, Open Question (3)) 
If the answer to (1), (1′) is positive, another question urges itself upon us: 
(3) Is any exact corrector the Lax extension from the Aubry set of an admissible trace ? 
Or, in other terms, is the Aubry set a uniqueness set for the critical equation, as in the deterministic compact case? 

Notice that both questions (1) and (3) have positive answer when 1N , see b[Davini-Siconolfi 2009], and in any space 
dimension when ),,(minsup pxHcc pxf   and the critical stable norm in nondegenerate, see b[Davini-Siconolfi 

2008]. 
 
[Open Problem Ⅱ.8-5]([Davini-Siconolfi 2012], pp. 24, Open Question (4)) 
Another subject of interest is about approximate correctors. So far we don’t have any counterexamples to their 

existence when exact correctors do not exist. Hence the main question is: 
(4) Do approximate correctors always exist? 
This issue is also strongly related to homogenization problems and a positive answer would be an important step 

towards generalizations of the results proved in [Rezakhanlou-Tarver 2000], [Rockafellar 1970] to more general 
Hamiltonians. 

 
[Open Problem Ⅱ.8-6]([Davini-Siconolfi 2012], pp. 25, Open Question (5)) 
Note that the existence results of [Ishii 2000] for approximate correctors in the almost-periodic case are based 

on an ergodic approximation of the Hamilton–Jacobi equation, and so are not constructive. A final question, which 
stems from the previous discussion, then is 

(5) At least in the almost-periodic case, are the approximate correctors representable through Lax formulae? 
 

[Open Problem Ⅱ.10.-1](b[Evans 2004], pp. 311) 

Evans in Theorem 7.1 of b[Evans 2004] proved the minimizer of  
n

dxD
h

T

22
2

||||
2

  satisfy 

)(
2

2

hOEW
h

  . 

Evans wrote in pp. 311 of b[Evans 2004] as follows: Regarding our state ψ as a quasimode, we furthermore derive 
some error estimates, although it remains an open problem to improve these bounds. 

 
4. Conclusion 

In this paper, we performed the comprehensive systemization of weak KAM theory for one to review the whole of 
fields and detailed fields of weak KAM theory. We systemized weak KAM theory as fundamentals of weak KAM theory, 
variations of weak KAM theory, and applications of weak KAM theory largely and then we systemized these three of the 
fields to 26 of detailed fields in the total. Moreover we systemized each of the detailed fields to various themes.  

We systemized comprehensively the conjectures, the open problems, and points at the issue that proposed in weak 
KAM theory as well. They contain 17 problems that are proposed newly in this paper.  

You would be able to survey the whole features of weak KAM theory that is being studied widely in various fields 
by this paper and obtain a compass in research of weak KAM theory. 
 
 

References 
 
[Achdou, 2012] Y. Achdou, F. Camilli and I. C. Dolcetta; Mean field games: numerical methods for the planning 
problem, SIAM J. of Control & Optimization 50 (2012), 77–109. 
 
[Agrachev, 2010] A. Agrachev and P. W. Y. Lee: Continuity of optimal control costs and its applications to weak KAM 
theory, Calculus of Variations and Partial Differential Equations, 39(1) (2010), 213–232. 
 
[Alvarez, 2007] O. Alvarez, M. Bardi, and C. Marchi: Multiscale problems and homogenization for second-order 
Hamilton-Jacobi equations, Advances in Differential Equations, to appear (2007), 1-39. 
  
[Ambrosio 2003] L. Ambrosio: Lecture notes on optimal transport problems, Lecture Notes in Math., 1812 (2003), 
Springer, 1–52.  
 
[Ambrosio, 2005] L. Ambrosio, N. Gigli and G. Savaré: Gradient flows in metric spaces and the Wasserstein spaces of 
probability measures, Lectures in Mathematics, ETH Zurich, Birkhäuser, (2005). 
  



 25

[Amorim, 2016] L. Amorim, Yong-Geun Oh, and J. O. dos Santos: Exact lagrangian submanifolds, Lagrangian spectral 
invariants and Aubry-Mather theory, arXiv:1603.06966v3 [math.SG] 11 Nov (2016), 1–24. 
  
[Anantharaman 2000] N. Anantharaman: Counting geodesics which are optimal in homology, preprint (2000), 1–34. 
 
[Anantharaman 2004] N. Anantharaman: On the zero-temperature or vanishing viscosity limit for certain Markov 
processes arising from Lagrangian dynamics, J. Eur. Math. Soc., 6(2) (2004), 207–276.  
 
a[Armstrong, 2012] S. N. Armstrong and P. E. Souganidis: Stochastic homogenization of Hamilton-Jacobi and 
degenerate Bellman equations in unbounded environments, J. Math. Pures Appl. 97 (2012), 460–504. 
 
b[Armstrong, 2012] S. N. Armstrong and P. E. Souganids: Stochastic homogenization of level-set convex HJEs, 
arXiv:1203.6303v1 [math.AP] 28 Mar (2012), 1–30. 
 
[Armstrong-Cardaliaguet 2016] S. Armstrong etal: Stochastic homogenization of quasilinear HJEs and geometric 
motions, arXiv:1504.02045v2 [math.AP] 27 Mar (2016), 1–65. 
 
a[Armstrong-Tran 2014] S. N. Armstrong and H. V. Tran: Viscosity solutions of general viscous Hamilton-Jacobi 
equations, Mathematische Annalen, to appear (2014), 1–41.  
 
b[Armstrong-Tran 2014] S. N. Armstrong and H. V. Tran: Stochastic homogenization of viscous Hamilton-Jacobi 
equations and applications, Analysis and PDE 7-8 (2014), 1969–2007. 
 
[Armstrong-Tran-Yu 2013] S. N. Armstrong, H. V. Tran, Y. Yu: Stochastic homogenization of a nonconvex 
Hamilton-Jacobi equation, arXiv:1311.2029v1 [math.AP] 8 Nov (2013), 1–18. 
  
[Armstrong-Tran-Yu 2014] S. N. Armstrong, H. V. Tran, and Y. Yu: Stochastic homogenization of nonconvex 
Hamilton-Jacobi equations in one space dimension, J. Differential Equations 261 (2016), 2702–2737. 
 
a[Arnaud 2010] M.-C. Arnaud: Green bundles and related topics, ICM 2010 Proceedings (2010), 1653–1679.  
 
[Arnaud 2012] M.-C.Arnaud: Green bundles, Lyapunov exponents and regularity along the supports of the minimizing 
measures, arXiv:1003.2139v3 [math.DS] 10 Feb (2012), 1–30. 
 
[Arnold 1963] V. I. Arnold: Proof of a theorem of A. N. Kolmogorov on the persistence of quasi-periodic motions under 
small perturbations of the Hamiltonian, Usp. Mat. Nauk 18:5 (1963), 13–40. English transl.: Russ. Math. Surv. 18:5 
(1963), 9-36.  
 
[Arnold 1989] V. I. Arnold: Mathematical Methods of Classical Mechanics, Second Edition, Springer (1989).  
 
[Aubry-Daeron 1983] S. Aubry, P. Y. Le Daeron: The discrete Frenkel-Kontorova model and its extensions. I. Exact 
results for the ground states, Phys. D8, No. 3 (1983), 381–422. 
 
 
[Bardi, 1997] M. Bardi and I. Capuzzo-Dolcetta: Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman 
equations, Birkhäuser Boston Inc., (1997).  
 
a[Barles 1985] G. Barles: Remarques sur des résultants d’existence pour les équations de Hamilton-Jacobi du premier 
ordre, Ann. Inst. Henri Poincaré, 2(1) (1985), 21–32. 
 
[Barles-Mitake 2010] G. Barles and H. Mitake: A PDE approach to large-time asymtotics for boundary-vallue problems 
for nonconvex Hamilton-Jacobi eqatioons, arXiv:1012.0688v2 [math.AP] 10 Dec (2010), 1–36.   
  
[Barles-Souganidis 2000] G. Barles and P. E. Souganidis: On the large time behavior of solutions of Hamilton-Jacobi 
equations, SIAM J. MATH. ANAL. 31(4) (2000), 925–939. 
 
[Barles-Souganidis 2001] G. Barles and P. E. Souganidis: Space-time periodic solutions and long-time behavior of 
solutions to quasi-linear parabolic equations, SIAM J. Math. Anal. 32(6) (2001), 1311–1323.  
  

[Barron 1999] E. N. Barron: Viscosity solutions and analysis in L . Nonlinear analysis, differential equations and 
control (Montreal, QC, 1998), 1–60. NATO Science Series C: Mathematical and Physical Sciences, 528. Kluwer, 



 26

Dordrecht, (1999).  
  
[Belbas 1981] S. A. Belbas; Optimal switching control of diffusion processes: The associated implicit variational 
problems, in: Decision and Control including the Symposium on Adaptive Processes, 1981 20th IEEE Conference on, 
Vol. 20 (1981), 1380–1383. 
 
a[Bernard 2005] P. Bernard: Symplectic aspects of Aubry-Mather theory, Duke Mathematical Journal, Duke University 
Press, 136(3) (2007), 401–420. 
 

a[Bernard 2007] P. Bernard: Existence of 1,1C  critical sub-solutions of the Hamilton-Jacobi equation on compact 
manifolds, Annales Scientifiques de l’École Normale Supérieure, 40(3) (2007), 445–452.  
  
b[Bernard 2007] P. Bernard: Smooth critical sub-solutions of the Hamilton-Jacobi equation, Math. Res. Lett., 14(3) 
(2007), 503–511. 
  
[Bernard 2010] P. Bernard: On the number of Mather measures of Lagrangian systems, arXiv:1001.3082v2 [math.DS] 
31 May (2010), 1–18. 
 
[Bernard 2012] P. Bernard; The Lax-Oleinik semi-group: a Hamiltonian point of view, arXiv:1203.3569v1 [math.DS] 15 
Mar (2012), 1–40. (Review paper) 
  
a[Bernard-Buffoni 2007] P. Bernard and B. Buffoni: Weak KAM pairs and Monge-Kantorovich duality, in: Asymptotic 
analysis and singularities-elliptic and parabolic PDEs and related problems, Adv. Stud. Pure Math., 4–27, Math. Soc. 
Japan, Tokyo (2007), 397–420.  
 
b[Bernard-Buffoni 2007] P. Bernard and B. Buffoni: Optimal mass transportation and Mather theory, J. Eur. Math. Soc. 9 
(2007), 85–121. 
 
[Bernard-dos Santos 2010] P. Bernard and J. Oliveira dos Santos: A geometric definition of the Aubry-Mather set, 
preprint (2010), 1–8. 
  
[Bernard-Zavidovique 2013] P. Bernard and M. Zavidovique: Regularization of subsolutions in discrete weak KAM 
heory, Canadian Journal of Mathematics, University of Toronto Press, 65 (2013), 740–756. 
 
[Bernardi, 2013] O. Bernardi, F. Cardin and M. Guzzo: New estimate on Evans’ variational approach to weak KAM 
approach, Communications in Contemporary Mathematics 15(2) (2013) 1250055 (36 pages)  
 
[Bessi 2003] U. Bessi: Aubry-Mather theory and Hamilton-Jacobi equations, Commun. Math. Phys. 235 (2003), 495–
511. (Review paper) 
 
[Birindelli-Wigniolle 2003] I. Birindelli and J. Wigniolle: Homogenization of Hamilton-Jacobi equations in the 
Heisenberg group, Communications on Pure and Applied Analysis, to appear (2003), 1–21. 
 
[Bissacot-Garibaldi 2010] R. Bissacot and E. Garibaldi: Weak KAM methods and ergodic optimal problems for 
countable Markov shifts, Bull Braz Math Soc, New Seires 41(3) (2010), 311–338. 
  
[Bouillard, 2015] A. Bouillard, E. Faou, and M. Zavidovique: Fast weak-KAM integrators for separable Hamiltonian 
systems, Mathematics of Computation, Vol. 85, No 297 (2016), 85–117. 
  
[Briani-Cardaliaguet 2018] A. Briani and P. Cardaliaguet: Stable solutions in potential mean field game systems, 
Nonlinear Differ. Equ. Appl. 25(1) (2018) 1.  
 
[Cacace, 2016] S. Cacace, F. Camilli and C. Marchi: A numerical method for mean field games on networks, ESAIM: 
Math. Model. and Num. Anal., in stampa. 
 
[Cagnetti, 2012] F. Cagnetti, D. Gomes, H. Mitake, and H. V. Tran: A new method for large time behavior of convex 
Hamilton-Jacobi equations, I: Degenerate equations and weakly coupled systems, arXiv:1212.4694 (2012). 
 
[Cagnetti-Goems-Tran 2011] F. Cagnetti, D. Gomes, and H. V. Tran: Aubry-Mather measures in the nonconvex setting, 
SIAM J. MATH. ANAL. 43(6) (2011), 2601–2629. 
  



 27

[Cagnetti-Gomes-Tran 2013] F. Cagnetti, D. Gomes, and H. V. Tran: Adjoint methods for obstacle problems and weakly 
coupled systems of PDE, ESAIM: Control, Optimisation and Calculus of Variations 19 (2013), 754–779. 
 
a[Calleja, 2013] R. C. Calleja, A. Celletti, R. de la Llave; A KAM theory for conformally symplectic systems: Efficient 
algorithms and their validation, J. Differential Equations 255 (2013), 978–1049. 
  
b[Calleja, 2013] R. Calleja, A. Celletti and R. de la Llave: Local behavior near quasi-periodic solutions of conformally 
symplectic systems, J. Dynam. Differential Equations 25(3) (2013), 821–841. 
  
[Calvez 1986] P. Le Calvez: Existence d'orbites quasi-périodiques dans les attracteurs de Birkhoff, Comm. Math. Phys. 
106(30) (1986), 383–394. 
 
a[Calvez 1988] P. Le Calvez: Les ensembles d’Aubry-Mather d’un difféomorphisme conservative de l’anneau déviant la 
verticale sont en général hyperboliques, C. R. Acad. Sci. Paris Sr. I Math. 306(1) (1988), 51–54. 
  
b[Calvez 1988] Patrice Le Calvez: Propriétés des attracteurs de Birkhoff, Ergodic Theory Dynam. Systems 8(2) (1988.), 
241–310.  
 
[Calvez 2000] P. Le Calvez: Dynamical properties of diffeomorphisms of the annulus and of the torus, SMF/AMS Texts 
and Monographs, 4. American Mathematical Society, Providence, RI; Socit Mathmatique de France, Paris, (2000). 
  
[Camilli, 2008] F. Camilli and P. Loreti: Comparison results for a class of weakly coupled systems of eikonal equations, 
Hokkaido Mathematical Journal 37 (2008), 349–362.  
 
[Camilli, 2012] F. Camilli, O. Ley, P. Loreti, and V. D. Nguyen: Large time behavior of weakly coupled systems of 
first-order Hamilton-Jacobi equations, Nonlinear Differ. Equ. Appl. 19 (2012), 719–749. 
 
[Camilli, 2015] F. Camilli, E. Carlini and C. Marchi: A model problem for Mean Field Games on networks, Discrete 
Contin. Dyn. Syst. 35 (2015), 4173-4192. 
 
[Camilli, 2016] F. Camilli and C. Marchi: Stationary mean field games systems defined on networks, SIAM J. Control 
Optim. 54 (2016), 1085–1103. 
 
[Camilli-Silva 2012] F. Camilli and F. Silva: A semi-discrete in time approximation for a model first order-finite horizon 
mean field game problem, Network and Heterogeneous Media 7 (2012), 263–277. 
 
a[Cannarsa, 2019] P. Cannarsa, W. Cheng, K. Wang, and J. Yan: Herglotz’ generalized variational principle and contact 
type Hamilton-Jacobi equations, in: Trends in Control Theory and Partial Differential Equations, in: Springer INdAM 
Ser., Vol. 32, Springer, Cham, (2019), 39–67. 
 
b[Cannarsa, 2019] P. Cannarsa, Q. Chen, W. Cheng: Dynamic and asymptotic behavior of singularities of certain weak 
KAM solutions on the torus, J. Differential Equations 267 (2019), 2448–2470.  
 
[Cannarsa, 2020] P. Cannarsa, W. Cheng, L. Jin, K. Wang, and J. Yan: Herglotz’ variational principle and Lax-Oleinik 
evolution, J. Math. Pures Appl. 141 (2020), 99–136. 
  
[Cardaliaguet 2010] P. Cardaliaguet: Notes on mean field games, lecture notes, 2010, 
https://www.ceremade.dauphine.fr/~cardaliaguet/MFG20130420.pdf. (Lecture notes) 
[Cardaliaguet, 2012] P. Cardaliaguet, J.-M. Lasry, P.-L. Lions, and A. Porretta: Long time average of mean field games, 
Netw. Heterog. Media 7:2 (2012), 279–301. 
 
[Cardaliaguet 2013] P. Cardaliaguet: Long time average of first order mean field games and weak KAM theory, Dyn. 
Games Appl. 3:4 (2013), 473–488.  
 
[Cardaliaguet, 2013] P. Cardaliaguet, J.-M. Lasry, P.-L. Lions, and A. Porretta: Long time average of mean field games 
with a nonlocal coupling, SIAM J. Control Optim. 51:5 (2013), 3558–3591.  
  
[Cardaliaguet, 2015] P. Cardaliaguet, P. J. Graber, A. Porretta, and D. Tonon: Second order mean field games with 
degenerate diffusion and local coupling, Nonlinear Differential Equations and Applications NoDEA 22(5) (2015), 1287–
1317. 
  
[Cardaliaguet, 2018] P. Cardaliaguet, C. Le Bris, P. E. Souganidis: Perturbation problems in homogenization of 



 28

Hamilton-Jacobi equations, J. Math. Pures Appl. to appear (2018), 1–39. 
 
a[Cardaliaguet, 2019] P.Cardaliaguet and A. Porretta: Long time behavior of master equation in mean field game theory, 
Analysis and PDE Vol. 12(6) (2019), 1397–1453.  
 
b[Cardaliaguet, 2019] P. Cardaliaguet and M. Masoero: Weak KAM theory for potential mean field game, J. Diff. Eq. to 
appear (2019), 1–44.  
 
c[Cardaliaguet, 2019] P. Cardaliaguet, F. Delarue, J.-M. Lasry, and P.-L. Lions: The master equation and the 
convergence problem in mean field games, Annals of Mathematical Studies 201, Princeton University Press, (2019).  
 
[Cardaliaguet-Graber 2015] P. Cardaliaguet and P. J. Graber: Mean field games systems of first order, ESAIM Control 
Optim. Calc. Var. 21:3 (2015), 690–722.  
 
[Cardin, 2014] F. Cardin and S. Vazzoler: Coherent states and quantum asymptotic features by weak KAM theory, Acta 
Appl. Math. 132 (2014), 189–197. 
 
[Carmona-Delarue 2018] R. Carmona and F. Delarue: Probabilistic Theory of Mean Field Games with Applications I-II, 
Springer, (2018). 
 
[Carneiro 1995] M. J. Dias Carneiro: On minimizing measures of the action of autonomous Lagrangians, Nonlinearity 8 
(1995), 1077–1085. 
  
[Cirant-Nurbekyan 2018] M. Cirant and L. Nurbekyan: The variational structure and time-periodic solutions for 
meanfield games systems, arXiv preprint arXiv:1804.08943 (2018). 
 
[Cirant 2019] M. Cirant: On the existence of oscillating solutions in non-monotone mean-field games, Journal of 
Differential Equations, to appear (2019).  
 
[Carlsson 2006] J. Carlsson: Pontryagin approximations for optimal design, Ph.D. Thesis, Stockholms Universitet, 
(2006), 16 pages.  
  
[Casdagli 1987] M. Casdagli: Periodic orbits for dissipative twist maps, Ergodic Theory Dynam. Systems 7(2) (1987), 
165–173. 
 
[Chen-Zhou 2017] Q. Chen and M. Zhou: Perturbation estimates of weak KAM solutions and minimal invariatn sets for 
nearly integrable Hamiltonian systems, Proceedings of the American Mathematical Society, 145(1) (2017), 201–214.  
 
[Concordel 1996] M. Concordel: Periodic homogenization of Hamilton-Jacobi equations I: additive eigenvalues and 
variational formula, Indiana Univ. Math. J. 45 (1996), 1095–1117. 
 
[Concordel 1997] M. Concordel: Periodic homogenization of Hamilton-Jacobi equations II: eikonal equations, Proc. Roy. 
Soc. Edinburgh 127 (1997), 665–689. 
 
[Contreras 2001] G. Contreras: Action potential and weak KAM solutions, Calc. Var. Partial Differ. Equ. 13(4) (2001), 
427–458.  
  
[Contreras, 1998] G. Contreras, R. Iturriaga, G. P. Paternain and M. Paternain: Lagrangian graphs, minimizing measures 
and Mañé's critical values, Geom. Funct. Anal. 8(5) (1998), 788–809. 
 
[Contreras, 2013] G. Contreras, A. Figalli, L. Rifford: Generic hyperbolicity of Aubry sets on surfaces, preprint (2013), 
1–40. 
  
[Contreras-Iturriaga 1999] G. Contreras and R. Iturriaga: Convex Hamiltonians without conjugate points, Ergodic 
Theory Dynam. Systems, 19(4) (1999), 901–952. 
  
[Contreras-Iturriaga 2000] G. Contreras and R. Iturriaga: Global Minimizers of Autonomous Lagrangians, CIMAT 
(2000), 222 pages.  
 
[Crandall-Lions 1983] M. G. Crandall and L, Lions: Viscosity solutions of Hamilton-Jacobi equations, Transactions of 
the American Mathematical Society, 277(1) (1983), 1–42. 
 



 29

[Dafermos 1985] C. Dafermos: Regularity and large time behavior of solutions of a conservation law without convexity, 
Proc. Roy. Soc. Edinburgh Sect. A 99 (1985), 201–239. 
 
[Davini-Siconolfi 2006] A. Davini and A. Siconolfi: A generalized dynamical approach to the large time behavior of 
solutions of Hamilton-Jacobi equations, SIAM J. Math. Anal., 38(2) (2006), 478–502. 
 
b[Davini-Siconolfi 2008] A. Davini, A. Siconolfi: A metric analysis of critical Hamilton-Jacobi equations in the 
stationary ergodic setting, preprint (2008). 
  
b[Davini-Siconolfi 2009] A. Davini and A. Siconolfi; Exact and approximate correctors for stochastic Hamiltonians: the 
1-dimensional case, Math. Ann. 345(4) (2009), 749–782.  
 
[Davini-Siconolfi 2012] A. Davini, A. Siconolfi: Weak KAM theory topics in the stationary eegodic setting, Calculus of 
Variations (2012) 44:319–350. 
  
[Davini-Siconolfi 2014] A. Davini and A. Siconolfi: Existence and regularity of strict critical subsolutions in the 
stationary ergodic setting, preprint (2014), 1–30. 
 
[Davini-Zavidovique 2012] A. Davini, M. Zavidovique: Aubry sets for weakly copupled systems of Hamilton-Jacobi 
equations, arXiv:1211.1245v1 [math.AP] 6 Nov (2012), 1–34. 
  
[Dolcetta, 1983] I. C. Dolcetta, M. Matzeu, and J.-L. Menaldi: On a system of first order quasi-variational inequalities 
connected with optimal switching problem, Systems and Control Letters, 3 (1983),113–116. 
 
[Dolcetta-Evans 1984] I. C. Dolcetta and L. C. Evans: Optimal switching for ordinary differential equations, SIAM 
Journal of Control and Optimization, 22(1) (1984), 143–161. 
 
[E-Sinai, 2000] Weinan E, K. Khanin, A. Mazel, and Ya. Sinai: Invariant measures for Burgers equation with stochastic 
forcing, Annals of Mathematics, 151 (2000), 877–960.  
 
[Evans 1992] L. C. Evans: Periodic homogenisation of certain fully nonlinear PDEs, Proceedings of the Royal Society of 
Edinburgh, 120A (1992), 245–265. 
 
[Evans 2001] L. C. Evans: Effective Hamiltonians and quantum states, Seminaire Equations aux Dérivées Partielles, 
Ecole Polytechnique (2000–2001). 
 
a[Evans 2004] L. C. Evans : A survey of partial differential equations methods in weak KAM theory, Communications 
on Pure and Applied Mathematics, Vol. LVII (2004), 0445–0480. (Review paper) 
 
b[Evans 2004] L. C. Evans: Towards a quantum analog of weak KAM theory, Commun. Math. Phys. 244 (2004), 311–
334. 
 
a[Evans 2003] L. C. Evans: Some new PDE methods for weak KAM theory, Calc. Var. Partial Differential Equations 
17(2) (2003), 159–177. 
 
b[Evans 2003] L. C. Evans: Three singular variational problems (Viscosity solutions of differential equations and related 
topics), Research Institute for the Matematical Sciences, Transcript of lectures and researches Vol. 1323 (2003), 183–
194. 
  
a[Evans 2004] L. C. Evans : A survey of partial differential equations methods in weak KAM theory, Communications 
on Pure and Applied Mathematics, Vol. LVII (2004), 0445–0480. (Review paper) 
 
b[Evans 2004] L. C. Evans: Towards a quantum analog of weak KAM theory, Commun. Math. Phys. 244 (2004), 311–
334.  
  
[Evans 2005] L. C. Evans: Weak KAM theory and partial differential equations, Lecture Notes in Math., 1927 (2005), 
Springer, 123–154. (Review paper) 
  
[Evans 2009] L. C. Evans: Further PDE methods for weak KAM theory, Calc. Var. Partial Differential Equations, 35(4) 
(2009), 435–462.  
 
[Evans 2014] L. C. Evans: Envelopes and nonconvex Hamilton-Jacobi equations, Calc. Var. 50 (2014), 257–282. 



 30

 
[Evans 2017] L. C. Evans: New Identities for weak KAM theory, Chin. Ann. Math. 38B(2) (2017), 379–392. 
 
[Evans-Friedman 1979] L. C. Evans and A. Friedman: Optimal stochastic switching and the Dirichlet problem for the 
Bellman equation, Transactions of American Mathematical Society, 253 (1979), 365–389. 
  
[Evans-Gomes 2001] L. C. Evans and D. Gomes: Effective Hamiltonians and averaging for Hamiltonian dynamics I, 
Archive Rational Mech and Analysis 157 (2001), 1–33. 
  
[Evans-Gomes 2002] L. C. Evans and D. Gomes: Effective Hamiltonians and averaging for Hamiltonian dynamics II, 
Archive Rational Mech and Analysis 161 (2002), 271–305. 
[Farias 2013] D. M. Farias: Weak KAM and Aubry-Mather theories in an optimal switching setting, Ph.D. Thesis, 
Universidade Técnica de Lisboa Instituto Superior Técnico (2013), 123 pages.  
 
a[Fathi 1997] A. Fathi: Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens, C. R. Acad. Sci. Paris 
Sér. I Math., 324(9) (1997), 1043–1046.  
 
b[Fathi 1997] A. Fathi: Solutions KAM faibles conjuguées et barrières de Peierls, C. R. Acad. Sci. Paris Sér. I Math., 
325(6) (1997), 649–652. 
 
a[Fathi 1998] A. Fathi: Orbites hétéroclines et ensemble de Peierls, C. R. Acad. Sci. Paris Sér. I Math., 326(10) (1998), 
1213–1216. 
 
b[Fathi 1998]: A. Fathi: Sur la convergence du semi-groupe de Lax-Oleinik, C. R. Acad. Sci. Paris Sér. I Math., 327(3) 
(1998), 267–270. 
 

[Fathi 2003] A. Fathi: Regularity of 1C solutions of the Hamilton-Jacobi equation, Annales de la Faculté des Sciences de 
Toulouse Mathématiques, 12(4) (2003), 479–516. 
 
[Fathi 2008] A. Fathi: Weak KAM Theorem in Lagrangian Dynamics. Preliminary Version Number 10, (2008), 273 
pages. 
 
[Fathi 2012] A. Fathi; Weak KAM from a PDE point of view: viscosity solutions of the Hamilton-Jacobi equation and 
Aubry set, Proceedings of the Royal Society of Edinburgh, 142A (2012), 1193–1236. (Review paper) 
 
[Fathi 2014] A. Fathi; Weak KAM theory: Connection between Aubry-Mather theory and viscosity solutions of 
Hamilton-Jacobi equation, Proc. ICM 2014, Vol. 3 (2014), 597–623. 
 
[Fathi-Figalli 2010] A. Fathi and A. Figalli: Optimal transportation on non-compact manifolds, Israel J. Math. 175 (2010), 
1–59. 
 
[Fathi-Figalli-Rifford 2009] A. Fathi, A. Figalli, and L. Rifford: On the Hausdorff dimension of the Mather quotient, 
Commun. Pure Appl. Math. 62 (2009), 445–500.  
 
[Fathi-Maderna 2007] A. Fathi and E. Maderna: Weak KAM theorem on non compact Manifolds, Nonlinear Differential 
Equations and Applications 14 (2007), 1–27.  
 
[Fathi-Mather 2000] A. Fathi and J. N. Mather: Failure of convergence of the Lax-Oleinik semigroup in the 
time-periodic case, Bull. Soc. math. France, 128 (2000), 473–483. 
 
[Fathi-Siconolfi 2012] A. Fathi and A. Siconolfi: On smooth time functions, Mathematical Proceedings of the 
Cambridge Philosophical Society, Vol. 152, Issue 02, (2012), 303–339. 
 

[Fathi-Siconolfi 2004] A. Fathi and A. Siconolfi: Existence of 1C  critical subsolutions of the Hamilton-Jacobi equation, 
Invent. Math.,155(2) (2004), 363–388.   
 
[Fathi-Siconolfi 2005] A. Fathi and A. Siconolfi: PDE aspects of Aubry-Mather theory for quasiconvex Hamiltonians, 
Calc. Var. Partial Differential Equations, 22(2) (2005), 185–228. 
 
[Fathi-Siconolfi 2006] A. Fathi and A. Siconolfi: Existence of solutions for the Aronsson-Euler equation, to appear 
(2006).  



 31

 
[Feldman, 2016] W. M. Feldman and P. E. Souganidis: Homogenization and non-homogenization of certain nonconvex 
Hamilton-Jacobi equations, Journal de Mathématiques Pures et Appliquées, to appear (2016), 1–30.  
 
[Ferreira-Gomes 2014] R. Ferreira and D. A. Gomes: On the convergence of finite state mean-field games through 
-convergence, Journal of Mathematical Analysis and Applications 418(1) (2014), 211–230. 
 
[Figalli-Goems, 2016] A. Figalli, D. Gomes, and D. Marcon: Weak KAM theory for a weakly coupled system of 
Hamilton-Jacobi equations, Calc. Var. 55:79 (2016), 1–32. 
 
a[Figalli-Rifford 2010] A. Figalli and L.Rifford: Closing Aubry sets Ⅰ, preprint (2010) 
 
b[Figalli-Rifford 2010] A. Figalli and L.Rifford: Closing Aubry sets Ⅱ, preprint (2010) 
 
[Fujita 2007] Y. Fujita: Convergence rates of asymptotic solutions to Hamilton-Jacobi equations in Euclidean n space, 
preprint (2007). 
 
a[Fujita-Ishii-Loreti 2006] Y. Fujita, H. Ishii, and P. Loreti: Asymptotic solutions of Hamilton-Jacobi equations in 
Euclidean n space, Indiana Univ. Math. J. 55 (2006), 1671–1700. 
 
b[Fujita-Ishii-Loreti 2006] Y. Fujita, H. Ishii, and P. Loreti: Asymtotic solutions of viscous Hamilton-Jacobi equations 
with Ornstein-Uhlenbeck oprator, Communications in PDE 31 (2006), 827–848. 
 
[Fujita-Uchiyama 2007] Y. Fujita and K. Uchiyama: Asymtotic solutions with slow convergence rate of Hamilton-Jacobi 
equations in Euclidean n space, Differential and Integral Equations 20(10) (2007), 1185–1200. 
 
[Gangbo 1997] W. Gangbo: The Monge mass transfer problem and its applications, preprint (1997), 1–26. 
 
[Gangbo, 2008] W. Gangbo, N. Tguyen and A. Tudorascu: Hamilton-Jacobi equations in the Wasserstein space, 
Methods and Applications Analysis 15(2) (2008), 155–184. 
 
[Gangbo-Święch 2015] W. Gangbo and A. Święch: Existence of a solution to an equation arising from the theory of 
mean field games, J. Differential Equations 259:11 (2015), 6573–6643.  
 
[Gangbo-Tudorascu 2009] W. Gangbo and A. Tudorascu: A Weak KAM theorem for the nonlinear Vlasov equation, 
preprint (2009). 
 
a[Gangbo-Tudorascu 2010] W. Gangbo and A. Tudorascu; Lagrangian Dynamics on an infinite-dimensional torus: a 
weak KAM theorem, Advances in Mathematics 224 (2010), 260–292. 
 
b[Gangbo-Tudorascu 2010] W. Gangbo and A. Tudorascu; A weak KAM theorem: from finite to infinite dimension, 
preprint (2010), 1–21. 
  
a[Gangbo-Tudorascu 2012] W. Gangbo and A. Tudorascu: An extension of the weak KAM theory to the Wasserstein 
torus, preprint (2012), 1–45. 
 
[Gangbo-Tudorascu 2014] W. Gangbo and A. Tudorascu: Weak KAM theory on the Wasserstein torus with 
multidimensional underlying space, Communications on Pure and Applied Mathematics, Vol. LXVII (2014), 0408–
0463. 
 
[Gangbo-Tudorascu 2018] W. Gangbo and A. Tudorascu: On differentiability in the Wasserstein space and 
well-posedness for Hamilton-Jacobi equations, Journal de Mathématiques Pures et Appliquées (2018) 1–47. 
 
[Gao 2016] H. Gao: Random homogenization of coercive Hamilton-Jacobi equations in 1d, Calc. Var. 55:30 (2016), 1–
39. 
 
[Garibaldi 2009] E. Garibaldi and P. Thieullen: Minimizing orbits in the discrete Aubry-Mather model, preprint (2009), 
1–58. 
  
[Gomes 2000] D. A. Gomes: Hamilton-Jacobi equations, viscosity solutions and asymptotics of Hamiltonian systems, 
Ph.D. Thesis, University of California (2000), 107 pages.  



 32

 
a[Gomes 2002] D. Gomes: A stochastic analogue of Aubry-Mather theory, Nonlinearity, 15(3) (2002), 581–603,  
 
b[Gomes 2002] D. A. Gomes: Regularity theory for Hamilton-Jacobi equations, SIAM J. Math. Anal. 35(1) (2002), 135–
147. 
 
c[Gomes 2002] D. Gomes: Viscosity solutions and Aubry-Mather theory, Lecture Notes in Math., 1798 (2002), Springer, 
245–257. (Review paper) 
 
d[Gomes 2002] D. Gomes: Viscosity solutions of Hamilton-Jacobi equations and asymptotics for Hamiltonian systems, 
Calculus of Variations and PDE 14 (2002), 345–357. 
   
[Gomes 2003] D. A. Gomes: Perturbation theory for viscosity solutions of Hamilton-Jacobi equations and stability of 
Aubry-Mather sets, SIAM J. Math. Anal. 35(1) (2003), 135–147. 
  
b[Gomes 2005] D. A. Gomes: Duality principles for fully nonlinear elliptic equations, Trends in partial differential 
equations of mathematical physics, 125-136, Progr. Nonlinear Differential Equations Appl., 61, Birkhauser, (2005). 
 
[Gomes 2008] D. A. Gomes: Generalized Mather problem and selection principles for viscosity solutions and Mather 
measures, Adv. Calc. Var. 1 (2008), 291–307. 
  
[Gomes, 2004] D. A. Gomes and A. M. Oberman: Computing the effective Hamiltonian using a varational approach, 
SIAM J. Control Optim. 43(3) (2004), 792–812. 
  
[Gomes, 2010] D. A. Gomes, J. Mohr, and R. R. Souza: Discrete time, finite state space mean field games, J. Math. 
Pures Appl. (9) 93:3 (2010), 308–328. 
 
[Gomes, 2011] D. A. Gomes, A. O. Lopes and J. Mohr: Wigner measures and the semi-classical limit to the 
Aubry-Mather measure, arXiv:1111.3187v1 [math.DS] 14 Nov (2011), 1–34. 
  
[Gomes-Mitake-Tran 2017] Diogo A. Gomes, Hiroyoshi Mitake and Hung V. Tran; The Selection problem for 
discounted Hamilton-Jacobi equations: some non-convex cases, submitted to Journal of the Mathematical Society of 
Japan, (2017), 1–18. 
  
[Gomes-Nurbekyan 2015] D. Gomes and L. Nurbekyan: On the minimizers of calculus of variations problems in Hilbert 
spaces, Calculus of Variations and Partial Differential Equations 52(1-2) (2015), 65–93. 
 
[Gomes-Nurbekyan 2016] D. Gomes and L. Nurbekyan: An infinite-dimensional weak KAM theory via random 
variables, Discrete & Continuous Dynamical Systems-A 36(11) (2016), 6167–6185. 
 
[Gomes-Oberman 2004] D. Gomes and A. Oberman: Computing the effective Hamiltonian using a variational approach, 
SIAM J. Control Optim. 43 (2004), 792–812. 
 
[Gomes-Sedjro 2017] D. Gomes and M. Sedjro: One-dimensional, forward-forward mean-field games with congestion, 
Discrete and Continuous Dynamical Systems - Series S 11 (2017), 901. 
 
[Gomes-Valls 2003] D. A. Gomes and C. Valls: Perturbation Theory and Discrete Hamiltonian Dynamics, preprint 
(2003), 1–28. 
 
[Gozzi 1996] F. Gozzi: Global regular solutions of second order Hamilton-Jacobi equations in Hilbert spaces with locally 
Lipschitz nonlinearities, Journal of Mathematical Analysis and Applications 198 (1996), 399–443. 
 
[Guéant-Lasry-Lions 2011] O. Guéant, J.-M. Lasry, and P.-L. Lions: Mean field games and applications, Paris-Princeton 
lectures on mathematical finance 2010, Springer (2011), 205–266. 
(Lecture notes) 
 
[Hamaguchi, 2015] K. Hamaguchi, G. Nishida, N. Sakamoto, and Y. Yamamoto: Rapid numerical solution of 
Hamilton-Jacobi equations in stable manifold method, Treatise of Sytem Control Information Society, 28(1) (2015), 32–
39. (Japanese) 
 
[Ichihara-Ishii 2009] N. Ichihara and H. Ishii: Long-time behavior of solutions of Hamilton-Jacobi equations with 
convex and coercive Hamiltonians, Arch. Rational Mech. Anal. 194 (2009), 383–419. 



 33

 
[Ishii 2000] H. Ishii: Almost periodic homogenization of Hamilton-Jacobi equations. International Conference on 
Differential Equations, Vol. 1, 2 (Berlin, 1999), 600–605, World Sci. Publ., River Edge, NJ, (2000).  
  
[Ishii 2008] H. Ishii: Asymptotic solutions for large time of Hamilton-Jacobi equations in Euclidean n space, Ann. I. H. 
Poincaré-AN 25 (2008) 231–266. 
 
[Ishii 2009] H. Ishii: Weak KAM Aspects of convex Hamilton-Jacobi equations with Neumann type boundary 
condktions, arXiv:0910.0390v1 [math.AP] 2 Oct (2009), 1–39. 
  
[Iturriagar 1996] R. Iturriaga: Minimizing measures for time-dependent Lagrangians, Proc. London Math Society 73 
(1996), 216–240. 
  
[Iturriaga, 2005] R. Iturriaga and H. Sánchez-Morgado: On the stochastic Aubry-Mather theory. Bol. Soc.Mat. Mexicana 
(3), 11(1) (2005), 91–99. 
 
[Kaloshin 2005] V. Kaloshin: Mather theory, weak KAM theory, and viscosity solutions of Hamilton-Jacobi PDE’s, in 
EQUADIFF 2003 (World Scientific Publishing, Hackensack NJ, 2005), 39–48. 
 
[Katok-Hasselblatt 1995] A. Katok and B. Hasselblatt: Introduction to the Modern Theory of Dynamical Systems, 
Cambridge University Press, Cambridge (1995), 802 pages. 
 
[Koike-Ley 2010] S. Koike and O. Ley : Comparison principle for unbounded visicosity solutions of degenerate elliptic 
PDEs, arXiv:1010.0105v1 [math.AP] 1 Oct (2010), 1–17. 
  
[Kolmogorov 1954] A. N. Kolmogorov: On the Conservation of Conditionally Periodic Motions under Small 
Perturbation of the Hamiltonian, Dokl. akad. nauk SSSR, Vol. 98 (1954), 527–530 (Rsussian). Engl. transl.: Lecture 
Notes in Physics, 93 (1979), Springer, 51–56. 
 
a[Lions, 1988] P.-L. Lions, G. Papanicolaou, and S. R. S. Varadhan: Homogenization of Hamilton-Jacobi equations, 
unpublished, circa (1988), 1–34. 
 
a[Lasry-Lions, 2006] J.-M. Lasry and P.-L. Lions: Mean field games. I-The stationary case, C. R. Acad. Sci. Paris, Ser. I 
343 (2006), 619–625.  
 
b[Lasry and Lions 2006] J.-M. Lasry and P.-L. Lions: Mean field games. II - Finite horizon and optimal control, C. R. 
Acad. Sci. Paris, Ser. I 343 (2006) 679–684. 
 
[Lasry-Lions 2007] J.-M. Lasry and P.-L. Lions: Mean field games, Japan. J. Math. 2 (2007), 229–260. (Review paper) 
 
[Lions 2008] P.-L. Lions: Mean-field games, cours au collège de france (2007–2008). (Lecture notes) 
  
[Lions 2010] P. L. Lions: “Jeux à champ moyen et applications”, lecture, Collège de France, November 12 2010, 
https://www.college-de-france.fr/site/en-pierre-louis-lions/course-2010-11-12-09h00.htm. 
 
[Leya-Nguyen 2016] O. L. and V. D. Nguyen: Gradient bounds for nonlinear degenerate parabolic equations and 
application to large time behavior of systems, Nonlinear Analysis 130 (2016), 76–101. 
 
[Li-Yan 2014]: X. Li and J. Yan: Weak KAM theory and Hamilton-Jacobi equations, SCIENTIA SINICA Physica, 
Mechanica & Astronomica 44(12) (2014), 1286–1290. (Review paper)  
 
a[Lions, 1987] P.-L. Lions, G. Papanicolaou and S. R. S. Varadhan: Homogenizations of Hamilton-Jacobi equations, 
unpublished preprint (1987), 1–34. 
 
[Lions, 2003] P.-L. Lions and T. Souganidis: Correctors for the homogenization of Hamilton-Jacobi equations in the 
stationary ergodic setting, Commun Pure Appl Math 56 (2003), 1501–1524.  
 
[Lions, 2009] G. Barles, F. Da Lio, P.-L. Lions and P. E. Souganidis: Ergodic problems and periodic homogenization for 
fully nonlinear equations in half-space type domains with Neumann boundary conditions, arXiv:0910.4720v1 [math.AP] 
25 Oct (2009), 1–18. 
 
[Lions-Souganidis 2010] P.-L. Lions and P. E. Souganidis: Stochastic homogenization of Hamilton-Jacobi and “viscous” 



 34

Hamilton-Jacobi equations with convex nonlinearities-revisited, Commun. Math. Sci. 8(2) (2010), 627–637. 
 
[Luo 2009] S. Luo: Numerical methods for static Hamilton-Jacobi equations, Ph.D Thesis, Unversity of California, 
Irvine (2009).  
 
[Luo, 2011] S. Luo, Y. Yu and H. Zhao: A new approximation for effective Hamiltonians for homogenization of a class of 
Hamilton-Jacobi equations, Multiscale Model. Simul. 9(2) (2011), 711–734.  
 
[Luo-Tran-Yu 2016] S. Luo, H. V. Tran, and Y. Yu: Some inverse problems in periodic homogenization of 
Hamilton-Jacobi equations, Arch. Ration. Mech. Anal. 221(3) (2016), 1585–1617. 
 
[Masoero 2019] M. Masoero: On the long time convergence of potential mfg, Nonlinear Differ. Equ. Appl. 26(2) (2019), 
15.  
 
[Mañé 1995] R. Mañé; Ergodic variational methods: new techniques and new problems, Proceedings of the International 
Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), Birkhäuser, Basel (1995), 1216–1220. 
  
[Mañé 1996] R. Mañé: Generic properties and problems of minimizing measures of Lagrangian systems, Nonlinearity, 
9(2) (1996), 273–310. 
 
[Mañé 1997] R. Mañé; Lagrangian flows: the dynamics of globally minimizing orbits, Bol. Soc. Brasil. Mat.(N.S.), 28(2) 
(1997), 141–153.  
 
[Marò-Sorrentino 2016] S. Marò and A. Sorrentino: Aubry-Mather theory for conformally symplectic systems, Commun. 
Math. Phys. 354 (2017), 775–808.  
 
[Mather 1982] J. N. Mather: Existence of quasi-periodic orbits for twist homeomorphisms of the annulus, Topology, Vol. 
21, Issue 4 (1982), 457-467. 
 
a[Mather 1989] J. N. Mather: Minimal action mesures for positive-definite Lagrangian systems, In Ⅸth International 
Congress on Mathematical Physics (Swansea, 1988), (1989), 466-468. 
 
[Mather 1991] J. N. Mather: Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z., 
207(2) (1991), 169-207. 
 
[Mather-Fomi 1994] J. N. Mather and G. Forni: Action minimizing orbits in Hamiltonian sytems, Lecture Notes in Math., 
1589 (1994), Springer, 92–186. (Review paper) 
  
[Mészáros-Silva 2018] A. R. Mészáros and F. J. Silva: On the variational formulation of some stationary second order 
mean field games systems, SIAM Journal on Mathematical Analysis 50(1) (2018), 1255–1277. 
 
[Mitake 2008] H. Mitake: Large time behavior of solutions of initial-boundary value problems for Hamilton-Jacobi 
equations in bounded domains, Preprint (2008), 1-2. 
  
[Mitake 2009] H. Mitake: Large time behavior of solutions of initial-boundary value problems for Hamilton-Jacobi 
equations, Ph.D. Thesis, Waseda University, (2009). 
  
[Mitake, 2016] H. Mitake, A. Siconolfi, H. V. Tran, and N. Yamada: A Lagrangian appraoch to weakely coupled 
Hamilton-Javobi systems, SIAM J. Math. Anal. 48(2) (2016), 821–846. 
  
[Mitake-Tran 2012] H. Mitake and H. V. Tran: Remarks on the large-time behavior of viscosity solutions of 
quasi-monotone weakly coupled systems of Hamilton-Jacobi equations, Asymptot. Anal, 77 (2012), 43–70.  
 
[Mitake-Tran 2013] H. Mitake and H. V. Tran: Large-time behavior for obstacle problems for degenerate viscous 
Hamilton-Jacobi equations, arXiv:1309.4831v1 [math.AP] 19 Sep (2013), 1-19.  
  
[Mitake-Tran 2014] H. Mitake and H. V. Tran: A dynamical approach to the large-time behavior of solutions to weakly 
coupled systems of Hamilton-Jacobi equations, J. Math. Pures Appl. 101 (2014),  76–93.  
 
[Mitake-Tran 2018] H. Mitake and H. V. Tran: On uniqueness sets of additive eigenvalue problems and applications, 
Proceedings of the Americal Mathematical Society 146(11) (2018), 4813–4822. 
  



 35

[Moser 1962] J. K. Moser: On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen, 
Math.-Phys. Kl. II 1 (1962), 1–20. 
 
[MSJ, 2007] Encyclopedic Dictionary of Mathematics, Forth Edition, Mathematical Society of Japan, Iwanami Shoten 
(2007). 
 
[Nakayasu 2014] A. Nakayasu: Two approaches to minimax formula of the additive eigenvalue for quasiconvex 
Hamiltonians, arXiv:1412.6735v1 [math.AP] 21 Dec (2014), 1-9. 
 
[Namah-Roquejoffre 1999] G. Namah and J.-M. Roquejoffre: Remarks on the long time behavior of the solutions of 
HJEs, Communications in Partial Differential Equations, 24(5-6) (1999), 883-893. 
  
[Nguyen-Siconolfi 2017] T. Nguyen, A. Siconolfi: Singularly perturbed control systems with noncompact fast variable, 
preprint (2017) 1-38. 
 
[Oberman, 2009] A. M. Oberman, R. Takei, and A. Vladimirsky:  Homogenization of metric Hamilton-Jacobi 
equations, Multiscale model. SIAM. 8(1) (2009), 269–295. 
 
[Popovic 2012] J. Popovic: Fast adaptive numerical methods for high frequency waves and interface tracking, Ph. D. 
Thesis, KTH School of Engineering Sciences (2012), 58pages. 
 
[Qian-Tran-Yu 2017] J. Qian, H. V. Tran, and Y. Yu: Min-Max Formulas and properties of nonconvex effective 
Hamiltonians, arXiv:1701.01065v1 [math.AP] 4 Jan (2017), 1-30. 
 
[Rutquist 2017] P. Rutquist: Methods for stochastic optimal control under state constraints, Ph.D. Thesis, Department 
Electrical Engineering, Chalmers University of Technology, Göteborg, Sweden 2017, 32 pages. 
  
[Rezakhanlou, 2000] F. Rezakhanlou and J. Tarver: Homogenization for stochastic Hamilton-Jacobi equations, Arch. 
Rational Mech. Anal., 151 (2000), 277–309.  
 
[Rifford 2008] L. Rifford; On visicosity solutions of certain Hamilton-Jacobi equations: Regularity results and 
generalized Sard’s theorems, Comm. Partial Differential Equations, 33(3) (2008), 517–559.  
  
[Rifford 2013] L. Rifford: Regularity of weak KAM solutions and Mañé conjecture, Séminaire Laurent Schwartz - EDP 
et applications (2011-2012), Exposé No. 17, 1–22. (Review paper) 
  
[Roquejoffre 2001] J. M. Roquejoffre: Convergence to steady states or periodic solutions in a class of Hamilton-Jacobi 
equations, J. Math. Pures Appl. 80(1) (2001), 85–104. 
  
[Rorro 2005] M. Rorro: Numerical approximation of the effective Hamiltonian and of the Aubry set for first order 
Hamilton-Jacobi equations, Control Systems, Theory, Numerics and Applications (2005), 1–16. 
 
[Rutquist 2017] P. Rutquist: Methods for stochastic optimal control under state constraints Ph.D. Thesis, Department 
Electrical Engineering, Chalmers University of Technology, Göteborg, Sweden 2017, 32 pages.  
 
[Shi-Yang 2016] G. Shi and C. Yang: Weak KAM theorem for a class of infinite-dimensional Lagrangian systems, 
arXiv:1609.08386v1 [math.DS] 27 Sep (2016), 1–14. 
 
[Siconolfi 2006] A. Siconolfi: Hamilton-Jacobi equations and dynamical systems: Variational aspects, Encyclopedia of 
Mathematical Physics (2006), 1304–1312. (Review paper) 
  
[Siconolfi 2012] A. Siconolfi: Hamilton-Jacobi equations and weak KAM theory, in R. A. Meyers (eds.) Mathematics of 
Complexity and Dynamical Systems, Springer (2012), 683–703. (Review paper) 
 
[Siconolfi 2016] A. Siconolfi: Weak KAM methods in PDE, University of Rome la Sapienza, Mini course in Merida 
(2016). (Lecture notes) 
 
[Siconolfi, 2009] F. Camilli, A. Cesaroni, and A. Soconolfi: Randomly perturbed dynamical systems and Aubry-Mather 
theory, preprint (2009), 1–28.  
 
[Siconolfi-Terrone 2007] A. Siconolfi and G. Terrone: A metric approach to the converse Lyapunov theorem for 
continuous multivalued dynamics, Nonlinearity, 20 (2007), 1077–1093. 



 36

  
[Sjöberg 2006] J. Sjöberg: Some results on optimal control for nonlinear descriptor systems, Ph. D. Thesis, Linköpings 
universitet, (2006), 104 pages.  
  
b[Soga 2009] K. Soga: Difference approximation to Aubry-Mather sets, Research Institute for the Matematical Sciences, 
Transcript of lectures and researches Vol. 1088 (2009), 7–19.  
 
a[Soga 2010] K. Soga: Theoretical and numerical analysis on the regular motions of Hamiltonian dynamics, Ph.D. 
Thesis, Waseda University, Tokyo, (2010).  
  
[Soga, 2010] T. Nishida and K. Soga: Difference approximation to Aubry-Mather sets of the forced Burgers equation, to 
appear. 
 
[Soga 2016] K. Soga: More on stochastic and variational approach to Lax-Friedrichs scheme, Mathematics of 
Computation, 10 (2016), 1-33. 
 
[Sorrentino 2016] A. Sorrentino: Lecture Notes on Mather’s Theory for Lagrangian Systems, Publicaciones Matematicas 
del Uruguay Volumen 16, Julio 2016, Páginas 169–192. (Review paper) 
 
[Sorrentino-Bernardi, 2017] A. Sorrentino and D. O. Bernardi: Weak KAM and Aubry-Mather theory, lecture on March 
15th, 2017 in Universitá degli Studi di Roma. (Lecture notes) 
  
[Souganidis, 1999] P. E. Souganidis: Stochastic homogenization of Hamilton-Jacobi equations and some applications, 
Asymptotic Analysis 20 (1999), 1–11. 
  
[Su-Thieullen 2015] X. Su, P. Thieullen: Convergence of discrete Aubry-Mather model in the continuous limit, 
arXiv:1510.00214v1 [math.DS] 1 Oct (2015), 1–41. 
 
[Su-Wang-Yan 2014] X. Su, L. Wang, and J. Yan: Weak KAM theory for general Hamilton-Jacobi equations Ⅰ: The 
solution semigroup under proper conditions, arXiv:1408.3792v1 [math.AP] 17 Aug (2014), 1–30. 
[Su-Wang-Yan 2016] X. Su, L. Wang, and J. Yan: Weak KAM theory for Hamilton-Jacobi equations depending on 
unkown functions, Discrete Contin. Dyn. Syst. 36 (2016) 6487–6522. 
 
[Villani 2003] C. Villani: Topics in optimal transportation, Graduate Studies in Mathematics 58, American Mathematical 
Society (2003), 382 pages. 
 
[Villani 2009] C. Villani: Optimal transport, old and new, Springer (2009), 635 pages. 
 
[Wang, 2021] K. Wang, L. Wang, and J. Yan: Weak KAM solutions of Hamilton-Jacobi equations with decreasing 
dependence on unknown functions, Journal of Differential Equations 286 (2021), 411–432. 
 
[Wang-Wang-Yan 2017] K. Wang, L. Wang, and J. Yan: Implicit variational principle for contact Hamiltonian systems, 
Nonlinearity 30 (2017), 492–515.  
  
a[Wang-Wang-Yan 2018] K. Wang, L. Wang, and J. Yan: Aubry-Mather and weak KAM theories for contact Hamiltonian 
systems. Part 1: Strictly increasing case, arXiv:1801.05612v4 [math.DS] 12 May (2018), 1–34 
  
b[Wang-Wang-Yan 2018] K. Wang, L. Wang and J. Yan: Aubry-Mather and weak KAM theories for contact Hamiltonian 
systems. Part 2: Strictly decreasing case, preprint. 
  
a[Wang-Wang-Yan 2019] K. Wang, L. Wang, J. Yan: Aubry-Mather theory for contact Hamiltonian systems, Commun. 
Math. Phys. 366 (2019), 981–1023. 
  
b[Wang-Wang-Yan 2019] K. Wang, L. Wang and J. Yan: Variational principle for contact Hamiltonian systems and its 
applications, to appear in J. Math. Pures Appl. 
 
[Wang-Yan 2012] K. Wang and J. Yan: A new kind of Lax-Oleinik type operator with parameters for time-periodic 
positive definite Lagrangian systems, Comm. Math. Phys., 309(3) (2012), 663–691. 
 
a[Wang-Yan 2014] L. Wang and J. Yan: Weak KAM theory without superlinearity, preprint (2014), 1–18. 
 



 37

b[Wang-Yan 2014] L. Wang and J. Yan: Weak KAM theory for general Hamilton-Jacobi equations Ⅱ: The fundamental 
solution under Lipschitz conditions, arXiv:1408.3791v1 [math.AP] 17 Aug (2014), 1–38. 
 
c[Wang-Yan 2014] L. Wang and J. Yan: Weak KAM theory for general Hamilton-Jacobi equations Ⅲ; The variational 
principle under Osgood conditions, arXiv:1408.3790v1 [math.AP] 17 Aug (2014), 1-18. 
 
[Wang-Yan 2019] Y. Wang and J. Yan: A variational principle for contact Hamiltonian systems, J. Differ. Equ. 267 
(2019), 4047–4088. 
  
[Wong  2018] T.-K. L. Wong: Logarithmic divergences from optimal transport and Rényi Geometry, Information 
Geometry 1 (2018), 39–78. 
 

[Yu 2006] Y. Yu: L Variational Problems and Weak KAM Theory, Communications on Pure and Applied Mathematics, 
Vol. LX (2007), 1111–1147. 
 
[Zanelli 2016] L. Zanelli: Schrödinger spectra and the effective Hamiltonian of weak KAM theory on the flat torus, J. 
Math. Phys. 57, 081507 (2016), 1–12. 
 
[Zanelli, 2021] L. Zanelli, F. Mandreoli and F. Cardin: A weak KAM approach to the periodic stationary Hartree 
equation, Nonlinear Differ. Equ. Appl. 28:56 (2021), 1–18. 
  
[Zavidovique 2009] M. Zavidovique: Strict sub-solutions and Mañé potential in discrete weak KAM theory, 
arXiv:0905.0615v1 [math.DS] 5 May (2009), 1–49. 
 

[Zavidovique 2010] M. Zavidovique: Existence of 1,1C  critical subsolutions in discrete weak KAM theory, 
arXiv:1004.0086v1 [math.DS] 1 Apr (2010), 1–28. 
 
[Zavidovique 2012] M. Zavidovique: Strict sub-solutions and Mañé potential in discrete weak KAM theory, Comment. 
Math. Helv. 87(1) (2012), 1–39. 
 
[Zavidovique, 2016] M. Zavidovique, A. Davini, and A. Siconolfi: Aubry-Mather theory for weakly coupled systems of 
Hamilton-Jacobi equations, UPMC, Rennes, May 30th (2016) 1–71. 
 
[Zhao-Cheng 2018] K. Zhao and W. Cheng, On the vanishing contact structure for viscosity solutions of contact type 
Hamilton-Jacobi equations I: Cauchy problem, arXiv:1801.06088. 
  
[Ziliotto 2017] B. Ziliotto; Stochastic homogenization of nonconvex Hamilton-Jacobi equations: a counterexample, 
Comm. Pure Appl. Math. to appear. 
 
 


