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Summary. The structure of light atomic nuclei, such as hydrogen, helium and lithium nuclides, was studied based on 

the cluster approach. Atomic nuclei are formed as systems consisting of free and bound lovetons, as well as neutron 

electrons and electron-positron pairs. The work focuses on the mass of the atomic nucleus and its binding energy as 

the main basic characteristics. There were determined the mechanisms considered binding nucleons into clusters, 

as well as the main patterns of changes in binding energy depending on the structure of the nucleus. 

As part of this study, atomic nuclei were visualized and the dependence of the nuclear binding energy on the 

number of lovetons, electron-positron pairs and neutron electrons was revealed. The possibility of forming a shell 

structure of an atomic nucleus consisting of cluster associations of α-particles has been shown. An algorithm for 

constructing the structure of the atomic nucleus is presented. The conditions for choosing the number of nuclear 
elements included in the atomic nucleus are determined. As additional results, an estimate of the binding energies of 

hypothetical hydrogen nuclides 8H and 9H was obtained, and their mass formulas were constructed. The charge radii 

of a number of hydrogen, helium and lithium nuclides have been calculated. The possibility of using the spiral structure 

of nuclei instead of the shell representation has been revealed. The nature of the occurrence of the binding energy of 

the atomic nucleus is explained. Comparison of the obtained values of binding energies and charge radii with 

experimental data allows us to assert an adequate approach to the formation of the structure of the atomic nucleus. 

Key words: atomic nucleus, cluster model, binding energy, visualization, structure, loveton, nucleon, nuclide, 

neutron electron, electron-positron pair, nucleon pairing, charge radius. 

 

INTRODUCTION 

The atomic nucleus is a multiparticle self-consistent system consisting of nucleons 

interconnected by nuclear interaction forces. Description of the properties of the nucleus based on 

the laws of interaction between nucleons is one of the most important problems of nuclear physics 

[1-3]. There are various models of atomic nuclei [4, 5] that describe the parameters of nuclei, 

including the interaction energies of nucleons. The development of nuclear models was carried out 

in two different directions. The first direction is characterized by the creation of “independent 

particle models”, in which it is assumed that each nucleon moves in the average field of all other 

nucleons in the nucleus almost independently of each other. This group includes: the Fermi gas 

model, the potential well model, the nuclear shell model, and the generalized and optical models. 

The second direction is characterized by the creation of “models with strong interaction” [6]. In 

these models, the nucleus is considered as an ensemble of strongly interacting particles. This group 

of models includes: the liquid drop model, the cluster model, and the compound nucleus model. 

The nuclear shell model [7] is widely used, in order to study the processes occurring in 

atomic nuclei. The theory of nuclear shells was developed by M. Goeppert-Mayer and I. Jensen 

for a single-particle model with a potential of three terms, including the spin-orbit interaction. 

Most of the proposed nuclear models are based on a fundamental approach, which serves 

as the main guideline for constructing phenomenological models. However, its application is 

severely limited, and therefore approximate methods have become widespread. The main 

approximate microscopic method is the mean field method [8]. The mean field method, or Hartree-

Fock method, makes it possible to describe the self-consistent nuclear field through studies of 2-

particle interactions. Based on this concept, it was possible to explain why the properties of nuclei 

with similar numbers of protons and neutrons are very different from each other. Calculations in 

mean-field models make it possible to estimate binding energies for individual nuclei, and the 

accuracy of predictions ranges from 0.3 to 1 MeV for the total binding energy [9, 10]. 

Using the Hartree-Fock method, it is possible to calculate the masses, radii and 

distributions of nucleons, as well as other nuclear properties. So, at work [11] the calculation of 

the masses of nuclei between the proton and neutron boundaries of existence is given; when 

updating the array of empirical data on masses, refined calculations are made using the Skyrme 

potential [12]. In this case, the standard deviation in calculations for binding energies does not 

exceed 0.55 MeV. However, we note that the disadvantages of most of these models are their 



phenomenology, the lack of structural representations, and the nature of intranuclear interactions 

is not considered. 

In a number of models, the atomic nucleus is considered as a system consisting of 

individual nucleons that form compact structures of two or more particles inside the nucleus [13]. 

Depending on the ratio of the number of protons and electrons, various constructions are possible, 

called clusters. To date, many theoretical techniques have been developed to study the 

phenomenon of nuclear clustering [14]. In a simple cluster model, it is believed that the atomic 

nucleus consists of two structureless fragments, the properties of which coincide or are close to 

the properties of the corresponding nuclei in a free state [15]. The cluster structure is especially 

clearly manifested in light nuclei. 

The stability of an atomic nucleus is characterised by its binding energy. Here, the binding 

energy is understood as the minimum amount of energy that must be expended to completely 

separate the atomic nucleus into individual nucleons. Another interpretation of the binding energy 

is possible, based on the reverse process, i.e., it represents the energy released during the fusion of 

free nucleons into the atomic nucleus [16]. 

The experimentally established distribution of binding energies over mass numbers in the 

nucleus has the following characteristic features [17, 18]: 

1. For kernels with small values mass number the specific binding energy tends to 

increase. 

2. For heavy nuclei, the specific binding energy is lower than for medium nuclei, and with 

increasing mass number there is a decrease in its value. 

3. For nuclei with the same numbers of protons Z and neutrons N, the specific energy is 

higher than for atomic nuclei with the same value mass number A, but with numbers of nucleons 

different from equality. 

4. Even-even nuclei have, on average, higher specific binding energies than odd-even or 

even-odd ones, and odd-odd ones have even lower specific binding energies. 

 

Theoretical explanation for this behavior specific binding energy gives the liquid drop 

model [19]. Taking into account all the listed properties leads to the semi-empirical Weizsäcker 

formula  

 𝐸𝑏 = 𝑎1𝐴 − 𝑎2𝐴2 3⁄ − 𝑎3𝑍2𝐴1 3⁄ − 𝑎4 (𝐴 2⁄ − 𝑍)2 𝐴⁄ + 𝑎5𝐴−3 4⁄ . (1) 

where a1-a5 are empirical coefficients; Eb is the binding energy; A is the mass number; Z is the 

charge number. 

The coefficients in formula (1) are selected from the conditions of the best agreement 

between the model distribution curve and the experimental data on binding energies. Equation (1) 

can approximately describe the binding energy of nucleons as a function of mass number A for all 

nuclides except the lightest nuclei, with A < 20 [20]. The greatest discrepancy between the 

experimentally measured values of nuclear binding energy and calculations using the Weizsäcker 

formula is observed in the region of magic numbers [22]. This is explained by the fact that the 

droplet model does not take into account the inhomogeneities in the distribution of nuclear matter 

caused by the shell structure of atomic nuclei [21]. 

The first attempt to correct the Weizsäcker mass formula by taking into account 

microscopic effects was made back by Myers and Świątecki [23]. The effects of the shell structure 

were manifested in the fact that the position of the levels of the single-particle spectrum deviated 

from the levels in the uniform spectrum. The shell correction was calculated as the difference 

between the energy levels of the shell model and the liquid-droplet (statistical) Fermi gas model. 

To improve the quality of predictions, in addition to the shell correction, the Wigner term was 

additionally introduced, which is associated with the special stability of nuclei with the same 

numbers of protons and neutrons [24]. 

Weizsäcker's formula was the first step towards a complete description of nuclear matter. 

Currently, a large number of model calculations of binding energy have been proposed. Models 



for analytical calculation of binding energies can be divided into microscopic, macro-microscopic, 

and phenomenological estimates based on local mass ratios [25]. Local mass ratios are arithmetic 

expressions that combine the binding energies of several nuclei close to each other on the nuclide 

map [26]. Based on the above considerations, the FRDM (Finite Range Droplet Model) model was 

created [27].The total nuclear energy in this model depends not only on the charge of the nucleus 

and the number of neutrons, but also on the shape of the nuclear system. In total, the FRDM model 

has 10 independent parameters, which must be determined using an array of experimental data on 

nuclide masses. In the modern FRDM model [28] the error is 0.56 MeV for 2194 nuclei from 16O 

to 264Hs, and for the region 𝑁 > 64 – 0.35 MeV, which makes the model comparable in accuracy 

to microscopic methods. 

The structural approach is also important, which, on the one hand, uses visual 

visualization, and on the other, is based on values determined by experimental methods [29]. 

Usually, the nucleus of an atom is usually depicted as an ellipsoidal dense packing of nucleons 

[30]. However, recently studies have appeared in which the core structure is a fragment of some 

lattice [31, 32]. 

In the process of studying the atomic nucleus, it became clear that the structure of a neutron 

or proton can change when the particle is bound in the atomic nucleus. Thus, it was discovered 

that the internal structure of nucleons depends on their environment [33]. That is, the structure of 

a nucleon in empty space is different from its structure when it is located in an atomic nucleus. 

However, despite theoretical and experimental work, the reason for this modification remains 

unclear. 

Starting with the works of J. Wheeler, K. Wildermuth and Y. Tang [34], which laid the 

foundations for studying the cluster properties of nuclear systems, it turned out that using the 

microscopic method it is possible to describe a wide range of physical phenomena, for example, 

static clustering and cluster decays, from a unified point of view, and also make significant 

progress in the study of processes in which such systems are involved. 

Consideration of the structure of the atomic nucleus shows that independent groups of 

clusters with characteristics close to the properties of individual free nuclei can be realized in the 

nucleus. Previously existing ideas about clusters stably existing in the nucleus were replaced by 

the understanding that in the process of almost independent movement of nucleons in the nucleus, 

virtual subsystems in the form of clusters are formed and destroyed [35]. Therefore, we can only 

talk about the probability of the existence of one or another cluster channel. However, if this 

probability is relatively high, you can use a single-channel cluster model, which in many cases 

turns out to be a good approximation to the situation actually existing in the kernel. Such a model 

makes it relatively easy to perform any calculations of nuclear characteristics, even in those 

systems where methods for solving the many-body problem are either very cumbersome in 

numerical execution or do not lead to specific quantitative results at all. 

Problems associated with the study of the cluster properties of the atomic nucleus have 

recently attracted special attention. The properties of clusters and the specifics of their interaction 

are reflected in the observable characteristics of the system as a whole and its reactions to various 

external influences. The experimental results for determining the binding energy of the nucleus 

also contain “pulsations” at a level of 1-2 MeV. Thus, the neutron separation energy for some 

nuclides periodically increases when the number of neutrons becomes even, and decreases when 

their values are odd. The difference in binding energies between even and odd nuclei indicates the 

presence of pairing forces in atomic nuclei [36]. Based on this consideration, as the goal of the 

presented work, one can choose to construct the nucleon structure of the nucleus based on the 

cluster approach and estimate the binding energies based on the available experimental data. At 

the same time, the problems of analyzing the structure of a number of nuclides are solved, with 

the possibility of subsequent formation of the spatial structure of the atomic nucleus. 

 

1. RESEARCH OBJECTIVE 

Let us consider the problem of constructing the structure of the atomic nucleus by 



studying the relative arrangement of nuclear elements: lovetons, electron-positron pairs and 

neutron electrons for light nuclei, and also show the possibility of layer-by-layer placement of α-

particles in accordance with the shell model of the nucleus. All calculated values of the parameters 

of nuclear elements are presented in Table 1 [37]. 

Таble 1 

 Calculated data on nuclear elements and their binding energies 

Particle Mass (meV) Type connect Energy connect (meV) 

Loveton, L 882.158477726 LL 6.18094291005 

Electron, e 0.51099895 Le 0.78127053419 

Neutrino, v 0.00106285981 ee 0.95644605733  

Note. For neutrino, the value of the reduced mass is given. Designations: LL –loveton-loveton; Le – loveton electron; 

ee – electron-electron (positron). 

 

To carry out the calculations, we use the original array of experimental data, which 

represents the binding energies of the Atomic Mass Evaluation AME 2022 nucleus [38], as well 

as data on charge radii [39], necessary for the targeted formation of structure and visualization of 

atomic nuclei. 

When constructing structures of atomic nuclei, it is necessary to adhere to a number of 

conditions and restrictions: 

1. In the vast majority of cases, modeling will not consider the Coulomb repulsion forces 

acting between protons in the nucleus. 

2. The structure of the nucleus will be modeled by a system of nucleons consisting of 

combinations of lovetons, neutron electrons and electron-positron pairs. 

3. Due to the closeness of the binding energies of neutron electrons and electron-positron 

pairs, an exchange of bonds between these nuclear elements is possible. 

4. The proposed method for forming the structure of a nucleus will be based on clustering 

analysis, that is, on the representation of a nucleus consisting of a collection of light nuclei and 

individual nucleons, considered as clusters forming a compound nucleus. 

5. The main geometric objects of the model of atomic nuclei will be free lovetons, which, 

together with bound lovetons, electrons and electron-positron pairs, model individual light nuclei. 

In this case, bound lovetons perform the function of creating cells of the nuclear framework into 

which free lovetons are embedded. 

6. To visualize the structure of the nucleus, you should build its diagram by filling the 

nuclear frame with the appropriate number of nuclear elements, choosing the number of frame 

cells and correctly placing each free loveton in its cell. Next, you should write down a mass 

formula that determines the type of nucleus in all areas of the nuclear diagram. 

7. The effect of nucleon pairing can only occur in combined nuclei. 

8. The combination of nucleons to form an atomic nucleus can be caused by dipole 

attraction induced by electron-positron pairs that make up the nucleons [37]. 

9. The proposed model of the atomic nucleus does not require the introduction of a 

hypothesis about the presence of quark objects. The mass of a neutrino is a fairly small value, so 

we will also exclude this particle from consideration when carrying out the process of formation 

of an atomic nucleus. 

 

According to the rules defined above, using computer modeling, spatial models can be built 

for all atomic nuclei. When conducting research taking into account this approach, formulas for 

determining the mass of the i-th atomic nucleus Mi, as well as binding energy Eb can be represented 

in the following form 



 𝑀𝑖 = 𝑁𝐿𝑚𝐿 + 𝑁𝑒𝑚𝑒 + 𝑁𝐿𝐿𝐸𝐿𝐿 + 𝑁𝐿𝑒𝐸𝐿𝑒 + 𝑁𝑒𝑒𝐸𝑒𝑒  (2) 

where ELL, ELe, Eee are the energies of LL-, ee- and Le-bonds in the nucleus; NL, NLL, NLe, Nee are 

respectively, the number of lovetons, LL-, ee- and Le-bonds in the nucleus; mL, me are loveton 

and electron masses. 

 𝐸𝑏 = 𝑁𝑝𝑚𝑝 + 𝑁𝑛𝑚𝑛 − 𝑀𝑖 (3) 

where Np, Nn is number of protons and neutrons in the nucleus; mp, mn are experimental values of 

proton and neutron mass. 

As a basis for constructing composite atomic nuclei, we will take the structural schemes 

of the proton and neutron (Fig. 1), as well as their mass formulas 

 𝑀𝑝 = 𝑚𝐿 + 2𝑚𝑒 + 8𝐸𝐿𝐿 + 𝐸𝑒𝑒 + 6𝐸𝐿𝑒  . (4) 

 𝑀𝑛 = 𝑚𝐿 + 3𝑚𝑒 + 8𝐸𝐿𝐿 + 𝐸𝑒𝑒 + 7𝐸𝐿𝑒  . (5) 

      a)                            b) 

Fig. 1 – Schemes of the structure of the nucleons: 

 a) proton; b) neutron   

  – bound lawton;     – bound antiloveton;    – free loveton;  

 – electron;    – electron-positron pair 

 

When determining the structural composition of atomic nuclei, we will consider the 

binding energy of the nucleus as the main criterion. Analysis of the change in binding energy when 

adding nuclear elements will allow us to estimate the magnitude of the change in the number of 

LL bonds, and an approximate assessment of the data on the number of ee-and Le-bonds can be 

carried out by calculating possible combinations of elements in the nucleus. Auxiliary analysis 

based on these relationships of linear dependences on the mass number will confirm the 

correctness of determining the structural composition of the selected nucleus. 

The mass estimates in the proposed method can be obtained using a step-by-step algorithm. 

We select an array of experimental data on the binding energies of nuclei, and use formula (2) to 

calculate the binding energy at the first step. If the calculation is performed by variations of the 

parameters in formula (2), the obtained estimates are averaged. Thus, for each new nuclide it is 

possible at one step to obtain from 1 to 4 estimates of the possible number of nuclear elements. 

The procedure is repeated until one set of nuclear elements is selected. Thus, more accurate results 

can be achieved if one takes into account possible changes in the binding energies of electron-

positron pairs and neutron electrons with lovetons. 

2. MODEL FORMATION 

2.1 HYDROGEN NUCLIDES 

Hydrogen-2 (2Н). For a deeper understanding of the structure of the nucleus, we will first 

understand the structure of the simplest compound nucleus of hydrogen – 2Н (deuteron), which is 

a deuterium nucleus. The results obtained, in terms of explaining the composition and structure of 

the deuteron, will in the future allow us to determine the general principles for constructing the 



structure of atomic nuclei. 

According to modern concepts, a deuteron is formed by the union of two nucleons: a proton 

and a neutron. In the deuteron, the proton and neutron can be united through the removal of two 

bound lovetons from their common composition. The loss of the two lovetons results in a reduction 

in the number of LL-bonds by three bonds. However, combining a proton with a neutron adds two 

new bonds to the structure of the resulting deuteron, which reduces the total number of LL-bonds 

by only one unit. In this case, two different structural states are formed (Fig. 2). 

 

 
a) b) 

 

Fig. 2 – Schemes of the structure of the deuterium (deuteron) nucleus: 

a) linear placement of lovetons; b) diagonal placement of lovetons 

  

The structural patterns that can be formed from a neutron and a proton are obtained when 

the free lovetons of the proton and neutron are combined linearly (Fig. 2a), and also when they are 

placed diagonally relative to the position of the bound lovetons (Fig. 2b), 

Regardless of the type of structural diagram chosen, this representation of the deuteron 

allows us to write the only mass formula for the deuteron 

 𝑀( 𝐻) = 2𝑚𝐿 + 5𝑚𝑒 + 15𝐸𝐿𝐿 + 7𝐸𝑒𝑒 + 12𝐸𝐿𝑒 
2 . (6) 

In formula (6), the number of LL-bonds is the sum of the number of bonds between bound 

lovetons, determined by the value: NLL = 7, as well as the value of these bonds between free and 

bound lovetons: NLL = 8. 

The total number of electrons and positrons included in the deuteron is numerically equal 

to: Ne = 5. The number of ee-bonds in this case is calculated through the total number of possible 

bonds between particles in electron-positron pairs, determined through the number of 

combinations, with the addition of one neutron electron bond : Nee = 7. 

The number of Le-bonds in a deuteron is determined by the number of these bonds between 

particles in electron-positron pairs and the lovetons in contact with them. For each such particle 

there are three bonds, therefore, the total number of Le-bonds will be equal to: NLe = 12. 

The presence of a bond between a neutron electron and an electron-positron pair does not 

allow the occurrence of β-decay, and the loss of an LL bond does not allow for nucleon decay. For 

these reasons, the deuteron can be classified as a stable nucleus. 

Hydrogen-3 (3H).When a second neutron is added to the deuteron, the nuclide 3H (triton) 

is formed – a tritium nucleus (Fig. 3). 

 



 
Fig. 3 – Scheme of the structure of the tritium (triton) nucleus 

 

This diagram represents a structure consisting of a deuterium nucleus, which is combined 

with a neutron added to it. In this case, the added neutron completely loses the bound lovetons 

included in its composition. In this case, the number of LL-bonds increases to the following value: 

NLL = 20, including seven LL-bonds between bound lovetons, 12 bonds between free and bound 

lovetons, as well as the appearance of one additional LL-bond due to the effect of neutron pairing. 

The number of ee-bonds, taking into account the number of combinations between particles of 

electron-positron pairs, as well as the possible inclusion of one of the neutron electrons in their 

composition, gives us 21 ee-bonds. Note that the number of Le-bonds is equal to 19. However, if 

we assume that one of the ee-bonds of a neutron electron is also converted into Le-bond, then their 

number is equal to: NLe = 20. The same value will be represented by counting ee-bonds: Nee = 20. 

This scheme is energetically more favorable than the simple addition of a neutron to a deuteron; 

therefore it is the one that most closely matches the triton binding energy. Accordingly, the mass 

formula will have the form 

 𝑀( 𝐻) = 3𝑚𝐿 + 8𝑚𝑒 + 20𝐸𝐿𝐿 + 20𝐸𝑒𝑒 + 20𝐸𝐿𝑒 
3 . (7) 

Thus, the triton is unstable because one of the neutron electrons has only one Le-bond, 

which can lead to β decay. 

Hydrogen-4,5,6,7 (4,5,6,7Н). All subsequent hydrogen nuclides decay directly into 3H 

(triton) and a series of neutrons. The instability of these nuclides indicates the absence of common 

LL bonds between triton and neutrons. Consequently, these particles form hydrogen nuclides only 

due to the presence of nuclear forces, as well as some change in the number of ee- and Le-bonds. 

Based on the above assumptions for 4H, the number of all bonds can be estimated by simply 

summing the bond data for the triton and the neutron attached to it. As a result, we will get the 

following values: NLL = 28; Nee = 21; NLe = 26, with the total number of electrons and positrons 

equal to Ne = 11. 

To clarify the summed values for 4H, we will use the known value of the binding energy 

obtained experimentally [37]. Correcting this formula taking into account the binding energy 

shows only an increase in Le-bonds to the value: NLe = 29. Consequently, neutron electrons, in the 

process of attaching a neutron to a triton, began to interact not only with their own free lovetons, 

but also with neighboring free lovetons, which leads to the appearance of three additional Le-

bonds. This fact allows us to write the following final formula for 4H 

 𝑀( 𝐻) = 4𝑚𝐿 + 11𝑚𝑒 + 28𝐸𝐿𝐿 + 21𝐸𝑒𝑒 + 29𝐸𝐿𝑒 
4  (8) 

The corresponding values for all subsequent hydrogen nuclides are calculated in a similar 

way. We only note the appearance of possible transitions in the number of ee- and Le-bonds, as 

well as the absence of pairing of hydrogen nucleons during the addition of neutrons. So, for 

hydrogen-5 this is an additional increase in the number of ee-bonds by one to the value Nee = 23. 

For hydrogen-6 there is an increase in not only ee-, but also Le-bonds by one as well. Hydrogen-7 

has no additional bonds. The analysis carried out allows us to write mass formulas for all hydrogen 

nuclides considered above 



 𝑀( 𝐻) = 5𝑚𝐿 + 14𝑚𝑒 + 36𝐸𝐿𝐿 + 23𝐸𝑒𝑒 + 35𝐸𝐿𝑒. 
5  (9) 

 𝑀( 𝐻) = 6𝑚𝐿 + 17𝑚𝑒 + 44𝐸𝐿𝐿 + 25𝐸𝑒𝑒 + 42𝐸𝐿𝑒. 
6  (10) 

 𝑀( 𝐻) = 7𝑚𝐿 + 20𝑚𝑒 + 52𝐸𝐿𝐿 + 26𝐸𝑒𝑒 + 48𝐸𝐿𝑒. 
7  (11) 

Table 2 shows the obtained parameters of the listed hydrogen nuclides. 

 

Таble 2 

Composition of hydrogen nuclides 

Nuclide 

Experiment 
Decay 
mode 

Daughter 
nuclide 

LL ee e  Le 

Calculation 

Mass, mexp 
(meV) 

Binding energy, Eexp 

(meV) 

Binding energy, 
Ecalc (meV) 

|Ecalc - 
Eexp| 

1H 938.272 0 Stable 8 1 2 6 0 0 

2H 1877.838 2.225 n p 15 7 5 12 2.181 0.044 

3H 2817.403 8.482 n 2H 20 20 8 20 8.466 0.016 

4H 3756.968 6.880 n 3H 28 21 11 29 6.905 0.025 

5H 4696.534 6.680 2n 3H 36 23 14 35 6.731 0.051 

6H 5636.099 5.760 3n 3H 44 25 17 42 5.775 0.015 

7H 6575.665 5.580 4n 3H 52 26 20 48 6.558 0.022 

Note: Stable nuclides are shown in bold. Source of data on masses and binding energies [38] 
 

2.2 HELIUM NUCLIDES 

Helium-3 (3He). The helium nucleus 3He (helion) arises from the β-decay of the heavy 

hydrogen nuclide, triton. In this case, one of the neutron electrons is emitted. This process leads to 

a change only in the number of electrons, leaving the number of bonds unchanged, due to the 

transition of one Le-bond to a second neutron electron. Helion, unlike triton, is stable and consists 

of two paired protons and one neutron (Fig. 4). 

 

 

Fig. 4 – Scheme of the structure of the helion 

 

If we assume that one of ee-bonds of a neutron electron are also converted into a Le-bond, 

then their number is equal to: NLe = 20. Accordingly, the mass formula practically coincides with 

the formula for triton, with the exception of the number of electrons in the nucleus 

 

 𝑀( 𝐻𝑒) = 3𝑚𝐿 + 7𝑚𝑒 + 20𝐸𝐿𝐿 + 20𝐸𝑒𝑒 + 20𝐸𝐿𝑒 . 
3  (12) 

 

Helium-4 (4Не). The 4Не structure (α-particle) is formed on the basis of the 3Не nuclide 

by adding another neutron to it (Fig. 5). When performing this operation, a number of structural 

changes occur. Firstly, the added neutron enters into the composition of 3Не without bound 



lovetons, including only a free loveton and an electron-positron pair, which leads to an increase 

in the number of LL-bonds to the value: NLL = 23. In addition, we take into account the presence 

of pairing of protons and neutrons between themselves. This gives us 2 additional LL-bonds. 

Therefore, the total number of LL-bonds will be: NLL = 25. 

 

 

Fig. 5 – Scheme of the structure of 4Не (α-particle) 

 

Secondly, the first neutron electron is displaced by the electron-positron pair of the added 

neutron, which contacts only one of the helium-3 electron-positron pairs, adding only three ee-

bonds to the total number of combinations for electrons, resulting in the value: Nee = 18. The total 

number of Le-bonds is determined by the number of 24 given bonds between all electron-positron 

pairs and free lovetons, as well as bonds of neutron electrons with free lovetons, the number of 

which can be estimated equal to four Le-bonds. In this case, the total number of Le-bonds is: NLe 

= 28. Based on the above, we can obtain a diagram of the 4Не nucleus, described by the mass 

formula 

 𝑀( 𝐻𝑒) = 4𝑚𝐿 + 10𝑚𝑒 + 25𝐸𝐿𝐿 + 18𝐸𝑒𝑒 + 28𝐸𝐿𝑒. 
4  (13) 

Thus, the increased stability of an even-even system, such as α particle, can be explained 

both by the presence of double pairing of nucleons and by the loss of two bound lovetons. 

Helium-5 (5Не). The 5Не nuclide can be obtained by adding an additional neutron to the 
4Не nucleus. 5Не, being an unstable nucleus by its nature, has an additive number of LL-bonds 

equal to: NLL =33. The number of ee-bonds is obtained by summing the existing bonds in 4Не with 

one bond of the neutron itself and two bonds that arise during the interaction of a neutron electron 

with one of the electron-positron pairs of the 4Не nuclide: Nee =21. The number of Le-bonds can 

also be obtained by summing up the bond data between the 5Не nuclide and the neutron: NLe=34. 

Helium-6 (6Не). In the case of the unstable nuclide 6Не, α particle combines with two 

neutrons. In this case, the core can be considered as a combined core with the loss of two LL 

connections. Summing up the number of LL-bonds of α-particle and neutrons, excluding two 

bonds, and adding one bond that arises during neutron pairing, we finally obtain: NLL =40. 

Electron-positron pairs of neutrons and neutron electrons receive three ee-bonds, in the presence 

of the already existing 18 bonds of the α-particle, which gives us the value: Nee =27. The number 

of Le-bonds is determined by summing the bonds of the α-particle and neutrons: NLe=40. 

Helium-8 (8Не). The 8Не nuclide is also an unstable nuclide, as is the case with 6Не, due 

to its participation in β-decay processes. At the same time, this nuclide is stable with respect to LL 

bonds, which indicates its association with added neutrons. By combining 6Не with two neutrons 

we also lose two LL bonds, but with the addition of one LL-bond due to neutron pairing. The 

calculation of the number of ee- and Le-bonds is carried out similarly to what we performed for 

the 6He nuclide. 

Helium-7,9,10 (7,9,10Не). All helium nuclides presented here can be subject to neutron 

decay and, therefore, instead of combining, neutrons are added under the influence of nuclear 

forces. This fact allows, as in previous cases for hydrogen nuclides, to calculate the masses of 

nuclei by simply summing the binding energies of lovetons, electron-positron pairs, and neutron 



electrons. The results of all calculations performed for helium nuclides are summarized in Table 

3. For all helium nuclides with a mass number of more than four, the recording of mass formulas 

is carried out similarly to those performed earlier. In this work, we will not present mass formulas 

for unstable atomic nuclei separately due to their similarity. 

Таble 3 

Composition of helium nuclides  

Nuclide 

Experiment 
Decay 
mode 

Daughter 
nuclide 

LL ee e  Le 

Calculation 

Mass, mexp 
(meV) 

Binding energy, Eexp 

(meV) 

Binding energy, 
Ecalc (meV) 

| Ecalc - 
Eexp | 

3He 2816.110 7.718 β- 3H 20 20 7 20 7.684 0.034 

4He 3755.675 28.296 n 3He 25 18 10 28 28.316 0.020 

5He 4695.240 27.560 n 4He 33 19 13 36 27.536 0.024 

6He 5634.806 29.271 β- 6Li 40 27 16 40 29.366 0.095 

7He 6574.371 28.862 n 6He 48 31 19 44 28.842 0.020 

8He 7513.937 31.396 β- 8Li 55 35 22 52 31.373 0.023 

9He 8453.502 30.141 n 8He 63 39 25 57 30.243 0.073 

10He 9393.068 29.950 2n 8He 71 41 28 63 29.894 0.056 

Note: Stable nuclides are shown in bold. Source of data on masses and binding energies [38]. 

 

2.3 LITHIUM NUCLIDES  

Lithium-4 (4Li). The nucleus of the 4Li nuclide is formed by the addition of a proton to 

the helion. In this case, both data nuclides remain practically independent. The total number of LL 

links is simply summed up to give the value: NLL =28. Accordingly, the number of ee-bonds also 

increases by one. However, here the number of Le-bonds changes structurally. Six bonds from the 

proton structure are added to the existing 20 Le-bonds of the helion, and additional three ee-bonds 

of the electron-positron pair of the proton with one of the electron-positron pairs of the helion 

appear. A neutron electron included in the composition of a helion can also receive Le-bond with 

the proton loveton. In this case, the total number of Le-bonds will be: NLe = 30. 

Lithium-5 (5Li). The next nuclide 5Li additionally includes a second neutron. This makes 

it possible to form inside the nucleus, as one of the elements, α-particle with a proton attached to 

it by nuclear forces. Being, like 4Li, an unstable nucleus, this nuclide has an additive number of 

LL-bonds equal to: NLL =33. In the same way as in 4Li, let’s sum up the number of their constituent 

ee-bonds. To the 19 existing ee-bonds, 2 more bonds of the electron-positron pair of the proton 

with a similar pair from the 4He composition will be added, which will change their number to the 

value: Nee = 21. The number of Le-bonds can also be obtained by summing up the data of the 4He 

and proton bond: NLe=34. 

Lithium-6 (6Li). In the case of a stable nuclide 6Li, a deuteron is added to α particle (Fig. 

6). In this case, the core can be considered as a combined core with the loss of one LL connection, 

which gives us: NLL =39. The number of ee-bonds of 6Li is determined by the number of added 

combinations with electron-positron pairs of the α-particle on the deuteron side, which gives 5 

additional ee-bonds. In addition, the neutron electron retains one more bond with the electron-

positron pair of the neutron, which in total leads to the value: Nee = 29. The number of Le-bonds 

is determined by the sum of such bonds of all elements included in the 6Li composition, with an 

additional bond of the neutron electron with one of lovetons. Consequently, the number of possible 

Le-bonds will be: NLe=41. 



 

 

Fig. 6 – Scheme of the structure of 6Li nuclide 

 

To calculate the mass of a stable nuclide 6Li based on the proposed structure diagram, the 

following mass formula can be represented 

 

 𝑀( 𝐿𝑖) = 6𝑚𝐿 + 15𝑚𝑒 + 39𝐸𝐿𝐿 + 29𝐸𝑒𝑒 + 41𝐸𝐿𝑒. 
6  (14) 

 

Lithium-7 (7Li). The addition of the seventh nucleon in the 7Li nuclide does not change 

the stability of the nucleus, but at the same time leads to some change in its composition. The 7Li 

nuclide is α-particle combined with both a deuteron and a separate neutron (Fig. 7). In total, the 

number of LL-bonds for the 7Li nuclide increases by seven bonds and amounts to: NLL = 46. The 

number of ee-bonds remains the same, since taking into account the bond in the electron-positron 

pair is compensated by the transition of the neutron electron to bonding with the loveton. 

Accordingly, we get: Nee = 29; The number of Le-bonds is determined by the sum of such bonds 

of all nuclear elements, calculated similarly to the calculation for the previous nuclide: NLe = 48. 

 

 

Fig. 7 – Scheme of the structure of 7Li nuclide 

 

Here, to calculate the mass of a stable nuclide7Li, we can write the following mass 

formula 

 𝑀( 𝐿𝑖) = 7𝑚𝐿 + 18𝑚𝑒 + 46𝐸𝐿𝐿 + 29𝐸𝑒𝑒 + 48𝐸𝐿𝑒. 
7  (15) 

Lithium-8,9,11 (8,9,11Li). Nuclides 8,9,11Li are considered to be unstable due to their 

participation in β-decay processes. At the same time, these nuclides are stable with respect to LL-

bonds, which indicate their association with added neutrons. Carrying out a similar examination 

of the structure of these nuclei makes it possible to determine the quantitative composition of these 

nuclides with a sufficient degree of accuracy.  

Lithium-10,12,13 (10,12,13Li). Regarding the nuclides 10,12,13Li, it can be argued that instead 



of combining, neutrons are added under the influence of nuclear forces, which allows, as in 

previous cases for hydrogen and helium nuclides, to calculate the masses of nuclei by simply 

summing the binding energies of lovetons and electron-positron pairs , as well as neutron electrons. 

The results of all calculations performed are summarized in Table 4. 

Таble 4 

Composition of lithium nuclides 

Nuclide 

Experiment 
Decay 
mode 

Daughter 
nuclide 

LL ee e Le 

Calculation 

Mass, mexp 
(meV) 

Binding energy, 
Eexp (meV) 

Binding energy, 
Ecalc (meV) 

| Ecalc - 
Eexp | 

4Li 2816.110 4.600 p 3He 28 21 9 30 4.559 0.041 

5Li 3755.675 26.330 p 4He 33 21 12 34 26.403 0.073 

6Li 4695.240 31.994 d 4He 39 29 15 41 32.071 0.077 

7Li 5634.806 39.245 n 6Li 46 29 18 48 39.209 0.036 

8Li 6574.371 41.278 β- 8Be 53 36 21 53 41.215 0.062 

9Li 7513.937 45.340 β- 9Be 60 40 24 59 45.309 0.031 
10Li 9391.774 45.314 n 9Li 68 41 27 66 45.310 0.004 

11Li 8453.502 45.709 β−. n 10Be 75 48 30 73 45.754 0.044 

12Li 9393.068 45.499 n 11Li 83 50 33 79 45.579 0.080 

13Li 9393.068 45.604 2n 11Li 91 51 36 86 45.580 0.017 

Note: Stable nuclides are shown in bold. Bold italic denotes β-decay nuclides. Source of data on masses and binding 
energies [38]. 

 

2.4 CLUSTER FORMATION OF α-PARTICLES 

The study of the static properties of compound atomic nuclei allows us to study the 

structural features of nuclei and the processes of their formation [39]. In carrying out this study, 

we will consider the problem of the formation of shells in an atomic nucleus using the example of 

even-even atomic nuclei. Let's take as basis even-even nuclei with the same number of protons 

and neutrons in the nuclei. Let us assume that collections of helium nuclei will be considered as 

such composite nuclei. 

Before moving on to a detailed consideration of the shell model of even-even atomic nuclei, 

we will try to obtain quantitative estimates of the elements that make up the atomic nucleus. We 

will determine the number of bonds between lovetons, electron-positron pairs, as well as between 

electrons and lovetons by sequentially increasing them by values known for the α-particle: NLL = 

25, Nee = 18, NLe = 28. Comparison of the obtained calculated values with known energy values 

connections, in order to estimate the real number of these connections, we will carry out by varying 

the number of connections between the individual elements that make up the core. Since the 

binding energy of the compound nucleus is known, changes in the composition of added α particle 

can be found by the number of LL-bonds of α particle, as well as ee-and Le-bonds. Consistent 

execution of this procedure, with the addition of new α-particles, allows one to perform 

calculations to determine the compositions of even-even nuclei from 4He to 100Sn. The results of 

calculations of the binding energies of such atomic nuclei are presented in Table 5. 

 

Таble 5 
Cluster formation of α-particles 

Index Nuclide 

Experiment 

LL ΔLL ee Δee Le ΔLe 

Calculation 

Mass, mexp 
(meV) 

Binding energy, 
Eexp (meV) 

Binding energy, 
Ecalc (meV) 

| Ecalc - 
Eexp | 

1s2 4He 3755.675 28.296 25 – 18 – 28 – 28.316 0.020 



1p2 8Be 7511.350 56.499 50 0 37 1 55 -1 56.457 0.043 

1p4 12C 11267.025 92.163 74 -1 53 -2 84 1 92.085 0.078 

1p6 16O 15022.700 127.621 98 -1 70 -1 112 0 127.539 0.082 

1d2 20Ne 18778.375 160.647 122 -1 87 -1 143 3 160.648 0.001 

1d4 24Mg 22534.050 198.257 146 -1 105 0 167 -4 198.270 0.013 

1d6 28Si 26289.725 236.541 170 -1 119 -4 195 0 236.593 0.052 

2s2 32S 30045.400 271.784 194 -1 137 0 222 -1 271.871 0.087 

1d8 36Ar 33801.075 306.717 218 -1 158 3 246 -4 306.623 0.093 

1d10 40Ca 37556.750 342.052 242 -1 175 -1 274 0 342.077 0.025 

1f2 44Ti 41312.425 375.475 266 -1 195 2 301 -1 375.442 0.033 

1f4 48Cr 45068.100 411.472 290 -1 213 0 327 -2 411.501 0.029 

1f6 52Fe 48823.775 447.700 314 -1 230 -1 354 -1 447.736 0.036 

1f8 56Ni 52579.450 483.998 338 -1 247 -1 381 -1 483.971 0.027 

2p2 60Zn 56335.125 515.004 362 -1 267 2 411 2 514.992 0.012 

2p4 64Ge 60090.800 545.887 386 -1 288 3 440 1 545.838 0.049 

1f10 68Se 63846.475 576.468 411 0 306 0 465 -3 576.498 0.030 

1f12 72Kr 67602.150 606.921 436 0 321 -3 494 1 606.902 0.019 

1f14 76Sr 71357.825 637.941 461 0 337 -2 521 -1 637.912 0.029 

2p6 80Zr 75113.500 669.922 486 0 352 -3 548 -1 669.879 0.043 

1g2 84Mo 78869.175 700.943 511 0 368 -2 575 -1 700.889 0.054 

1g4 88Ru 82624.850 731.464 536 0 386 0 600 -3 731.549 0.085 

1g6 92Pd 86380.525 762.085 561 0 405 1 624 -4 762.033 0.052 

1g8 96Cd 90136.200 793.406 586 0 423 0 648 -4 793.474 0.068 

1g10 100Sn 93891.875 825.160 611 0 440 -1 673 -3 825.090 0.070 

Note: Stable nuclides are shown in bold. Bold italic denotes not subject to nucleon decay nuclides. Changes in the 

number of bonds relative to the addition of an α-particle are reflected in the graphs ΔLL, Δee и ΔLe. Source of data on 

masses and binding energies [38]. 

3. RESULTS AND DISCUSSION 

3.1 HYDROGEN NUCLIDES 8,9H 

In a previously presented article [29], it was suggested that there is a probability of 

population of the last two cells belonging to the 1p subshell. In this case, it is theoretically possible 

to indicate the presence of hydrogen nuclides with mass numbers A equal to 8 and 9. When 

considering such hypothetical nuclides as 8H and 9H, drawing analogies with the previously 

considered hydrogen nuclides, it is possible to estimate not only the number of bonds formed, but 

also determine values of their binding energies. Here we apply two approaches simultaneously. 

First, let's compare the composition of the odd-even nuclides 4H and 6H with the possible hydrogen 

nuclide 8H, as well as the odd-even nuclides 5H and 7H with 9H. Also, to control the correctness of 

the assessment of data on the composition of the corresponding hypothetical nuclides, you can use 

linear regression equations between the quantities of LL-, ee- and Le-bonds and the mass number 

A of the hydrogen nuclides being determined. 

LL-bond. When going from nuclide 4H to 6H, which have numbers of LL-bonds with values 

equal to 28 and 44, it is possible to estimate the range of data difference for the transition from 

nuclide 6H to 8H, which will be equal to: ΔNLL = 16. In this case, the number of LL bonds for 

nuclide 8H will take the value equal to: NLL (8H) = 60. In the same way, we determine the number 



of LL-bonds during the transition from nuclide 7H to 9H: NLL (9H) = 68. 

To check the correctness of the above estimates, we will construct a regression equation 

for the dependence of the number of LL bonds on the mass number A, which can vary in the range 

from 4 to 7. This equation will have the form: NLL = 8A – 4. Based on this equation, we can obtain 

integer values of the number LL -bonds are equal: NLL (8H) = 60 and NLL (9H) = 68, which 

completely coincides with the previous calculation of the considered parameters. In this case, both 

proposed methods are adequate, which is confirmed by the results obtained. 

ee-bond. We will carry out calculations to calculate the number of ee-connections using 

the same algorithm as for LL-bonds. First, having estimated the data difference ranges for 

transitions between 6H and 8H, as well as between 7H and 9H nuclides, we calculate the numbers 

of ee-bonds for selected hypothetical nuclides: Nee (8H) = 28; Nee (9H) = 29. Using the linear 

regression equation for the dependence of the number of ee-bonds on the mass number, which has 

the form: Nee = 1.6A + 15, we obtain the values of the number of ee-bonds: Nee (
8H) = 27.8; Nee 

(9H) = 29.4. Rounding these values to whole numbers allows you to confirm earlier calculations. 

Le-bond. Repeating the previous arguments for Le-bonds, we obtain the following values: 

NLe (
8H) = 56; NLe (

9H) = 62. When checking, taking into account the linear regression equation: 

NLe = 6.9A + 0.3, we obtain the values of the number of Le-bonds: NLe (
8H) = 55.5; NLe (

9H) = 62.4. 

Rounding these values to integer values confirms the correctness of the calculations. 

Knowing all the numerical values of the quantity LL-, ee- and Le-bonds, we can write mass 

formulas for the nuclides we considered 

 𝑀( 𝐻) = 8𝑚𝐿 + 23𝑚𝑒 + 60𝐸𝐿𝐿 + 28𝐸𝑒𝑒 + 56𝐸𝐿𝑒. 
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 𝑀( 𝐻) = 9𝑚𝐿 + 26𝑚𝑒 + 68𝐸𝐿𝐿 + 29𝐸𝑒𝑒 + 62𝐸𝐿𝑒 . 
9  (17) 

At the end of our consideration of the parameters of hypothetical hydrogen nuclides, we 

will evaluate their binding energies. To do this, taking the error in calculating these binding 

energies close to zero, for the nuclides under consideration we obtain the following values: Eb(
8H) 

= 4.82 Mev; Eb(
9H) = 5.60 Mev. 

 

3.2 CHARGE RADIUS OF LIGHT NUCLIDES 

The charge radius of an atomic nucleus is one of the main parameters that determine its 

size and provide information about its internal structure. Let us estimate the charge radii for light 

nuclei of hydrogen, helium and lithium. 

Proton. The numerical value of the proton charge radius is: rp = 0.8414 fm [40]. However, 

with previously used standard measurement methods, this indicator had a slightly different value, 

equal to 0.8783 fm [41]. Currently, it is customary to consider both of these values as acceptable 

when conducting research. Here, we will assume that the loveton included in the proton, in a free 

state or close to it, has a larger charge radius. In a state of strong connection with other nucleons, 

a slight decrease in the charge radius occurs. For this reason, in a number of calculations of nuclide 

radii, an increased value of the proton charge radius (deuteron, triton and helion) will be used; in 

other cases, a refined value of this parameter will be used. 

Deuteron. The known value of the deuteron charge radius is equal to 2.1424 fm [42]. The 

charge radius of the deuteron can be calculated using a scheme with diagonal placement of 

lovetons (Fig. 2b). In this case, we will assume that the axis of charge symmetry OO′ is located 

strictly between these particles, perpendicular to the line connecting the centers of free lovetons 

(Fig. 8). 

In this case, the charge radius of the deuteron can be calculated using the formula: 𝑟𝑑 =

𝑟𝑝(√2 + 1). Calculation using this formula gives the deuteron radius a value of 2.1185 fm. 

 



 
Fig. 8 – Charge radii of light nuclides: 

a) deuteron; b) triton; c) helion; d) helium-4; e) lithium-6. OO΄ – axis of charge symmetry 

 

Triton. Now let's move on to the triton. Here we will place the axis of charge symmetry 

in the vertical direction (Fig. 8). The experimental value of the triton radius is: rt = 1.7591 fm 

[42]. The absence of electrostatic interaction allows, as in the case of the deuteron, to calculate 

the charge radius of the triton, taking into account the occurrence of nuclear rotation along the 

axis of charge symmetry passing along the OO′ line. In this case, the triton radius can be taken 

equal to double the proton radius: rt = 2rp = 1.7550 fm, which practically coincides with the value 

obtained experimentally. 

Helion. Let us determine the charge radius of the helion (Fig. 8). To determine the charge 

radius, we first estimate the distance between the proton centers. Considering that the equality of 

nuclear and Coulomb forces will occur at ∆𝑟 = 𝑙√6 (Δr – is the distance between the centers of 

protons; l is the arm of the dipole represented by the electron-positron pair) [37]. If we consider 

the dipole arm to be numerically equal to the proton radius: l = rp, then the value of Δr will be a 

distance of the order of 2.1494 fm. In this case, the helion's charge radius will take a value equal 

to 1.9522 fm, which is quite close to the experimental value of 1.9661 fm [42]. 

Helium-4. During the transition from helion to helium-4, the charge symmetry axis retains 

its position (Fig. 8). Here it should be assumed that the charge radius of this nucleus should be 

equal to twice the radius of the proton. At the same time, the protons themselves included in the 

nucleus must be considered significantly more strongly bound, which leads to the absence of 

changes in their positions and the need to take into account the current value of their charge radius, 

equal to 0.84184 fm. In this case, the charge radius of helium-4 has a value of 1.67824 fm. This 



value practically coincides with the double charge radius of the proton. 

Lithium-6. The root mean square charge radius of 6Li is usually estimated as follows: rLi 

= 2.589 fm [33]. Just as for helium-4, we take the charge radius of the proton to be equal to: rp = 

0.84184 fm [32]. 

We will calculate the charge radius of lithium-6 taking into account the displacement of 

the charge symmetry axis by the value of the proton radius (Fig. 8). In Figure 8 the axis of charge 

symmetry already passes through the lovetons centers. The right-handed loveton included in the 

neutron does not affect the value of the charge radius. In this case, the charge radius of this 

nucleus must be equal to triple the radius of the proton. Calculation of the charge radius of 

lithium-6 shows a value equal to: r (6Li) = 2.5525 fm. The absolute error, when comparing the 

calculated value of the charge radius with the experimental one, does not exceed a value equal 

to 0.07 fm. 
The charge radius of lithium-7 can be estimated similarly. However, due to the influence 

of strong interaction, the radius may have a slightly smaller value. At this stage of the study, this 

calculation was not carried out. All data on the charge radii of light nuclides are presented in Table 

6. 

Таble 6 
Charge radii of light nuclides 

Nuclide Experimental value, rexp Calculated value, rcalc | rexp – rcalc | 

Deuteron, 2H 2.1280 2.1185 0.0095 

Triton, 3H 1.7591 1.7550 0.0041 

Helion, 3He 1.9661 1.9522 0.0139 

Helium-4, 4He 1.6755 1.6837 0.0082 

Lithium-6, 6Li 2.5890 2.5255 0.0635 

 

As can be seen from Table 6, the calculated values the charge radii of the nuclides 

practically coincide with the experimental values of the considered light nuclei, which indicate the 

validity of the proposed visual model of the atomic nucleus. 

 

3.3 CLUSTER AND SHELL MODELS FOR α-PARTICLES 

From the data shown in Table 5, it is clear that the 8Be nucleus, in which the forces of 

electrostatic interaction prevail over nuclear forces, can be stated to be independent of each other, 

the two alpha particles included in its composition. Here one α particle occupies the 1s level, while 

the next one occupies the higher 1p state. Subsequently, in accordance with the selected layers of 

the core shell, at each step of the proposed procedure, all nuclei from 12C to 64Ge sequentially lose 

one LL connection. It can also be noted that the spatial distributions of α particles in nuclei do not 

have an LL relationship between individual orbitals.  

 

Fig. 9 – Spiral form of representation of the shell structure of the core 



 

In this case, neighboring clusters, in the form of α-particles, can have a number of ee- and 

Le-bonds with each other. This fact indicates the possibility of considering the visual arrangement 

of α-particles not as a set of shells, but as a set of spirals when considering each of the orbitals of 

the nucleus (Fig. 9). Subsequent nuclei, starting with the 68Se nuclide, are already attached without 

changing the number of LL-bonds and, therefore, with a predominance of nuclear forces, during 

their formation, over the bonds between nuclear elements.  

To summarize, we note that from the point of view of the proposed approach, even-even 

atomic nuclei can be considered as a system of helium nuclei strongly bound to each other within 

individual orbitals of a compound nucleus. Thus, in space, the configuration of α-particles should 

not look like a set of shells, but can be considered as a group of spirals. 

4. CONCLUSION  

In contrast to previously proposed approaches to calculating the binding energy of a 

nucleus, the representation of clusters in the form of a collection of light nuclei and individual 

nucleons made it possible to construct visual structural objects that explain not only the reason for 

the occurrence of binding energy, but also the patterns of hydrogen, helium and lithium nuclides. 

In the proposed cluster model, it is possible to well reproduce such static characteristics of nuclei 

as nuclear masses, their binding energies, as well as quantitative values of such quantities as the 

number of nuclear elements that make up the selected nuclide. Thus, we have shown that the 

previously expressed assumption about the existence of nuclear elements allows you to simulate 

the dependence of binding energy on the number of nucleons. The disadvantage of the developed 

model compared to the semi-empirical droplet model is that the model parameters are determined 

not for the entire set of nuclides at once, but for the nuclides of each element separately. The 

advantage here is a clearer physical meaning of the parameters included in the mass equations. 

The main result of this work is that a model has been obtained that describes the relative 

arrangement of lovetons, neutron electrons and electron-positron pairs in the nucleus. In 

accordance with the proposed model, the structure of atomic nuclei is mainly formed due to LL-

bonds formed as a result of the interaction of both bound and free lovetons. 

Using the presented approach, the following results were obtained: 

1. All nuclei are constructed by taking into account the interaction of both free and bound 

lovetons, forming a quasicrystalline spatial structure. 

2. The nature of the appearance of nuclear binding energy, which arises due to the breaking 

of some of the bonds between nuclear elements, has been revealed. 

3. The reason for the change in the properties of nuclei during transitions from even to odd 

nuclei has been clarified. 

4. The main contribution to the mass comes from the binding energy of Lovetons. An 

additional contribution to the mass of the nucleus is the binding energy between electron-positron 

pairs, neutron electrons and their interaction with lovetons. 

5. Nuclear diagrams were constructed and the masses and binding energies of light nuclei 

were calculated. 

6. The binding energies for hypothetical nuclides 8H and 9H were determined. 

7. The charge radii of a number of light nuclides were calculated. 

8. Clustering of nucleon systems for light and medium nuclei, represented by collections 

of α-particles, has been carried out. Obtained estimates of binding energies for even-even nuclides 

with Z=N for mass numbers in the range 4 ≥ A ≤ 100 using an analysis of the behavior of the 

relationships between the number of nuclear elements and mass numbers. 

9. The possibility of a spiral form of representation of the shell structure of the nucleus is 

shown, i.e. in the form of a set of spirals. 

 



The application of the proposed method for describing the masses of atomic nuclei has 

shown that estimates of the parameters under study obtained with its help are sufficiently accurate, 

and the method itself is simple both in calculations and in the clarity of the results obtained. The 

presented model of the atomic nucleus can also be useful in calculating the binding energies of 

nuclides when also considering heavy nuclei. 
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