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In this paper we will use Geometric Algebra to be able to embed the Klein-Gordon
equation for a particle in a non-Euclidean field (gravitational field) arriving to the

following equation:
h
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Where 1y is the wavefunction collapsed (multiplied by its reverse), this way:
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Being p and j the probability density and the fermionic current respectively.

The equation above can be factored to be simplified into:

[l
Vo = mCZ——R Yeq

Meaning that the energy of a particle is somehow decreased by a term that depends

on the Ricci scalar (the curvature of the space where it lies in):
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Anyhow, this reduction is completely negligible in the general case, being several

orders of magnitude below the normal energy.

Following other path, we will find another equation:

2

1h 1 h?
E;guv (eﬁvﬁ(va(wflp)eu)) + Eguv (;R +mc >1/ﬁ1/) -

4

1
8n6( w 9wk Ag’”) =0



https://www.researchgate.net/profile/Jesus-Sanchez-21

J. Sanchez

This equation (that are in fact 8 embedded equations) have 14 or 15 unknown varia-

bles: 8 coefficients of the wavefunction ¥° to ¢” and 6 metric elements g;; (i

from 1 to 3) with a possible added gq,.

The rest of the needed equations (8 equations more) come from the continuity equa-
tion:

eV, T =0
With T defined as:
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So, the equation is in fact, solvable.
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1. Introduction

In this paper we will embed the Klein-Gordon equation for a particle in a non-Euclidean
field (gravitational field) using Geometric Algebra and the Einstein equations. This will
lead to new equations that we will show in the paper.

2. Geometric Algebra Cls,0. Basis vectors

There is a discipline in mathematics that is called Geometric Algebra [1][3] also known as
Clifford Algebras.

In the specific Geometric Algebra Clsy, it is considered a three-dimensional space, so we
need three independent vectors to define a basis. The classical definition of a basis is as
follows:

Fig. 1 Basis vectors in three-dimensional space.

In this paper we will use the nomenclature e; (without any hat or vector sign) to name these

three vectors instead the classical X § Z. Above, | have considered an orthonormal basis as
an example.
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But in the general case, this is not even necessary. The only necessary constraint to form a
basis is that the three vectors are linearly independent (this is, they do not lie on the same
plane). An example below:

In geometric algebra, it is defined an operation called the geometric product. The geometric
product is not represented by any symbol. It is the implicit operation when two vectors are
represented one after the other.
Its definition is:
eie]- = €; -e]-+el-/\e]-
Being:
e; - ¢; = llegllej]| cos(ay;)

The classical definition of the scalar product. The product of the two norms (the length) of
the vectors by the cosine of the angle formed by them (we have called it o;j in this case).

The result of the scalar product is a number, a scalar. An important property of the scalar
product is that it is commutative:

ei- e = ¢ e = llegll|ejlcos(ay;)
As the cosine of the angle is included in the product, you can check that when e; and e;j are
perpendicular (right angle), the scalar product is zero. And the vectors are colinear (the
angle is zero), the scalar product is just the product of the modules of the vectors.
The other element of the geometric product above is:

e; N ej

What it is called the outer, exterior or wedge product of the two vectors.
The result of this operation is not a number. It is another entity that is not a number and not

a vector. It is called a bivector. The bivector is an entity that represents an oriented surface
area (in a same way that a vector “represents” an oriented line segment).

ee ee,
€ y .
D .
e |/ »
v i -
v e

It can be checked above that the module (area of the surface) when reversing the order of
the exterior product is the same. But the orientation (its sign) changes. So, the exterior
product is anticommutative:
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ei/\ej = —ej/\ei
The module (area of the surface) of the exterior product is:
lle: Aell = [lej Aecl| = lleall]e;| sin(a;)
You can see that when the vectors are colinear (the angle is zero), the exterior product
result is zero. And when the vectors are perpendicular, the module of the exterior product
is the product of the modules of the vectors.
Coming back to the definition of the geometric product:

eie]-=ei-ej+el-/\e]-

We can see that when we perform the square of a vector, this is, the product of a vector by
itself (the vector is colinear with itself, its angle is zero) the result is:

(e)>=ee;=¢ e +eNe =llellllell -1+ 0= lleglllle;ll = lle;ll?
So, the square of a vector is its norm squared. The important thing here, is that the result is
just a number. It is not a vector, it is not a bivector, it is just a number. We have converted

a vector to a number just multiplying it by itself.

If now, we multiply (geometric product) two perpendicular vectors (the angle between
them is a right angle):

eiej=€i'ej+ei/\€j=O+ei/\€j=ei/\€]'

So, you can see that the result is a pure bivector. It does not include vectors or scalars, just
a bivector.

If we reverse the angle, we have:
e]'ei :e]' 'ei+e]'/\ei = 0+e]-/\el- = e]-/\el- = _ei/\ej' = _eie]'

So, when two vectors are perpendicular, not only the exterior product, but also the geomet-
ric product is anticommutative.

From the equations above we can obtain the following equations.
1
e ej = E(eiej + ejei)

1
e; N ej = E (eiej - ejei)

The demonstration comes directly from the definition of the geometric product. If we sum
a geometric product by its reverse, we put the definition of geometric product, we take into
account that the scalar product is commutative and the exterior product anticommutative:
eiej+ejei :ei‘ej+ei/\ej+ej‘€i+€j/\ei:ei‘€j+ei/\€j+€i‘6j_ei/\€j
=2(e; - ¢))

1
e; ej = E(eiej' + ejei)

If instead of summing, we subtract:
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eiej—ejei=ei'ej+ei/\ej—ej'€i—ej/\ei=ei'€j+ei/\ej—ei'ej+ei/\ej
=2(ei/\ej)

1
€; N ej = E (el’ej - ejei)

We will see in next chapters that when we apply the exterior product instead of the geo-
metric product of two vectors, this means that we want only the result that appears in the
plane they form (in the bivector they form). And we “remove” from the result the scalars
(that will appear with the scalar product of the vectors) and also, we remove the possible
result in vectors (in more complicated products that we will see in next chapters).

Another point to comment is that the exterior product of bivectors (instead of vectors) is

defined in the opposite way (summing instead of subtracting). | am not going to enter into
details, you can check it in [3].

1
(eie;) A (eres) = > (eiejeres + ereseje;)

The same way, the scalar product of bivectors is also defined as the opposite of vectors.
See [3].

1
(eiej) - (eye5) = E(eiejeres — eresejei)

Also, to remark that the geometric product is always associative and distributive as you can
see in [3]. Butin general, is not commutative or anticommutative as commented (it depends
on the specific product) We will see more examples in the following chapters.

To conclude this chapter about geometric algebra, we will define the trivector. When two
vectors are exterior multiplied, they form a bivector as seen above. The same way, when
three vectors are exterior multiplied, they create an oriented volume, called the trivector:

e Aej A ey

e;NejAe,

You can see again, that when we reverse the vectors, we get the same volume (module of
the trivector) but with different orientation (sign):

ei/\ej/\ek:_ek/\ej/\ei

We will check more thing regarding reversion and change of signs in the next chapter.
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3. Geometric Algebra Cls,. Different types of bases

3.1 Orthonormal basis

In an orthonormal basis, the norm of the basis vectors is equal to one. And the basis vectors
are perpendicular to each other.

So, from the properties commented in chapter 2, we can get obtain the following equations
(for orthonormal basis):

(e)=ee;=¢-e=1
eej =e Nej=—e;ANe; = —eje; (Wheni# )
ereg=e-e=0 (wheni=j)

Making the equations explicit for three dimensions:
(e1)? =eje; =1

(32)2 =ee, =1
(33)2 =eze; =1

€16; = —€6
€63 = —€36,
€361 = —€16

We can define the inverse of a vector and name it ', as the vector that fulfills (Einstein
summation is not implied here):
(e)le;=ele;=1=¢ee) " = ee
To calculate &' we can post multiply by e;:
(e) teje; = eleje; =1-¢;
e'(e)? =¢
el-1=¢
el =e; = ()"

So, in orthonormal metric the inverse of a basis vector is itself. It is important to remark
here that in Geometric Algebra there are no covectors (or 1-forms). There are only scalars,
bivectors, trivectors... We will see that the concept of covector in Geometric Algebra is
just a vector that is the inverse of another vector.

i

In traditional algebra you cannot define the inverse of a vector, so it is used a different type
of element. In Geometric Algebra, the covectors are also vectors. And in fact, the product
of inverse vectors by vectors outputs scalars as it would be expected by the product of a
covector by a vector.

3.2. Geometric Algebra Cl3,0. Orthogonal but not orthonormal basis

In an orthogonal basis, the vectors are perpendicular to each other. But in general, the norm
of the vectors is not one. In Geometric Algebra Cls o, the norm of the basis vectors is always
positive and different from zero. The 0 in the name Cls o, makes reference that there are no
basis vectors with negative norm. and the absence of a third number makes reference that
also, there no basis vectors with zero norm.

From the properties commented in chapter 2, we can get obtain the following equations
(for orthogonal, not orthonormal basis):

(e)? =ee; =¢ e = llell* = gy
eej=e Nej=—eNe;=—eje; (wheni# j)
ejrej=e-e=0 (wheni=j)

Making the equations explicit for three dimensions:

(31)2 =66 = ”31”2 =J11
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(e2)* = eze; = |lezI* = 922
(e3)* = ezez = |les|I* = 933
€163 = —€26;
€263 = —€3€,
€361 = —€1€61

Where the g;; makes reference to the metric tensor components. See paper [2]. Take into
account that when you multiply two colinear vectors (and a vector is colinear with itself),
its geometric product is equal to the scalar product. And this is exactly the definition of g;;
(the scalar product of e; with itself).

The definition of the inverse of a vector, and naming it e , is the vector that fulfills (not
Einstein summation is implied here):
(e)7le;=ele; =1 =r¢e;(e) " = eset
To calculate e' we can post multiply by e;:
(e)) teje; = eleje; =1-¢;

el(e)? = e

e'lleill” = e;
e'gi = e
e e = (e

B i llell?

So, in orthogonal metric the inverse of a basis vector is itself divided by its norm squared
(by gi;). Everything commented regarding covectors in 3.1 applies also here.

One important consequence of this, is that if the basis vectors are orthogonal (as in this
chapter), all the basis vectors and all the inverse of the basis vectors are also orthogonal
among them (when ij). this is:

) e 1 1
e' e =g—;-e,- =%(€i e) =E§€i6j +eje) =0
ool =19 (e;-€) ==——/(eiej +ee;) =0

Cgi 9j  29i9j) 29:9;;j

In the last equation (but when i=j) we get:

ei-ei—(ei)z—&-i— 1 (e -e)——1 (e;e;) = ! -1 = !
9i 9i 9adu = Gubu (9i1)* (9:1)?
These last properties apply also to chapter 3.1 (orthonormal basis) but in that case
the elements gii or gj are always 1.

3.3. Geometric Algebra Clso. Non-Orthogonal (and therefore not or-
thonormal) basis

In a non-orthogonal basis, the vectors are not perpendicular from each other. And in gen-
eral, the norm of the vectors is not one. As commented in 3.2, in Geometric Algebra Cls,
the norm of the basis vectors is always positive and different from zero.

From the properties commented in chapter 2 and also in [2], we can get obtain the following
equations (for orthogonal, not orthonormal basis):

(e)? = ee; = lleill” = gy
e;e; = 2g;; —eje; = 295 — eje;
€ ¢ =¢€-¢€=4gij=Yji
eej=e-eteNe=g;t+teNe
Making the equations explicit for three dimensions:

(61)2 =66 = ||€1||2 =011
(32)2 = €6, = ||€2||2 =022
(33)2 = €3e3 = ||€3||2 = 033

e18; = 2915 — €361 = 20y — €38
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€63 = 20,3 — €36, = 2(3; — €36,
esey = 2g31 —e1e3 = 2¢g;3 — €163

Where the g;; makes reference again to the metric tensor components (the scalar products
of the basis vectors). See paper [2] for more information. You can obtain the above equa-

tions from the definition of scalar product in geometric algebra as commented in chapter
2.

1
e; - ej = gU = E(eie]' + e]'ei)
Multiplying by 2:
291] = eie]- + ejei
Rearranging terms (and knowing that the metric tensor is symmetric):
eie]- = 291] — e]-el- = 2911 — ejei
Now, we will define again the inverse of the basis vectors and name them e'. To obtain the
inverse of the basis vectors is this case, you have to get the inverse of the metric tensor, so
you are able to define a vector e' that fulfills for every i and every j the following (Einstein
summation does not apply):

(e)7le;=ele; =1 =r¢e;(e) " = eset

) 1 ) )
e‘-ej=ei-ef=E(eief+efel-)=0 fori=+j

In general, this is written as:

Where 6} is the Kronecker Delta, that is equal to 1 when i=j and 0 when i#j.

If we multiply two inverse vectors between them, in non-orthogonal metric, we do not
obtain zero as a general case. See below:

et-el = E(e‘e’ +elet) =g =gt
So:
ele) =2gY —elet
And:
elel = (el)? = el - ¢l = gt
In this paper, we will work mainly with orthogonal (or orthonormal basis), so do not worry
about these above points. For more info regarding how to invert the metric you have a lot
of literature [58][59][60][61][62][64].

What we will do in general, is to make all the calculations with orthogonal metrics and then
try to generalize to the case of non-orthogonal metric applying the above relations.
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3.4. Geometric Algebra Clsz,0. Sum of geometric products of basis vectors

We will calculate the following sum. Take into account that the product inside the sum is
geometric (not scalar) and that we have not imposed anything regarding the basis (it can

be not orthogonal).
3 3
S =::§: :E: e#ﬁ
i=1 bmd j=1

If we operate, we get:
S =-ee; +ee, +ee;+
+e,e; +eye, +e,e5 +
+ese; +ese, +eze; =
e;eq +eze, +ezez +
+(e e,te,ey) +
+(eyesteze,) +
+(ese;+eje3) =
ej-e +e e, t+ez-ez;+
+2(e; - ey) +
+2(e, - e3) +
+2(e; - eq1)
As the scalar product is always symmetric (independently if the basis is orthogonal or not)
we can convert the elements that are multiplied by 2, in the sum of two scalar products
reversed (with the same result).
S=e e t+e-e,tez-e3+
+e, e, +e, e +
+e,-e3+e3-e,

+e3‘el+el‘e3:

3 3 3 3
i=14=dj=1 i=14=dj=1

So:

3

3 3 3 3 3
E E eﬂ% = E E ei‘%'= E gU
i=1 j=1 i=1 j=1 i=1 j=1

As commented, this holds, independently of the type of metric. And in fact, it holds even
for more than three dimensions, but | have preferred to do it explicitly for three dimensions
to avoid any doubt and avoid getting lost in the subindices.
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Now, consider a symmetric tensor (or a symmetric matrix if you want) that have the com-
ponents a’:

al] — a]l

And now want to perform the sum (don’t worry, I will explain the reason of all this later):

3 3 .
=14 j=1

Making the same calculation as above (and only if al is symmetric) we will obtain a similar

result:
3 3 . 3 3 . 3 3 »
NDIRCTE WS NELCROE WS
i=1 j=1 i=1 Jj=1 i=1 Jj=1

Or using the Einstein notation to simplify:
aeiej=a(e;-e)) =ag;;  onlyif a’ = alt
Similarly, we can obtain:
a;je'e) = a;;(e-e/) =a;97  onlyif a; = ay
But if:
i

alele; = al(e' - ¢;) = al 6} = a only if a!

Il
2

alejel = al(e; - e') = al6} = a onlyifal = a
Where the last move of above equations is a property of the Kronecker Delta that you can
check in [59][60][61][62].

3.5. Geometric Algebra Clzo0. Expanding the basis

One of the properties of the Geometric Algebra is that the number of elements that conform
the algebra of a certain realm are more than the number of dimensions of that realm. In
three dimensions we have three basis vectors as commented, but we have 8 different ele-
ments that conform that algebra, that are:

e The scalars

e The three vectors

e  The three bivectors

e  One trivector

We will call these elements with these names:

ey — scalars
€1
€z
€3
€, = €3
€5 = €361
€c = €162
€7 = €1€3€3

10



J.Sanchez

Regarding eo | will comment later. In Geometric Algebra probably you would expect e;=1.
And this is the natural move, but | will come back to this later, as commented.

The elements e, es, es are bivectors whose square is negative, as we will see now. And e;
is the trivector whose square is also negative, as we will see.

In general, we will work with orthogonal (not necessarily orthonormal) basis. About the
non-orthogonal case, we will talk explicitly in certain points of the paper. If nothing is said,
along the paper we will work with orthogonal metric that fulfills the following, already
commented, relations:

(e)>=ee;=e; ¢ = |lell* = Yii
eiej = €; A ej = —e]' A e; = —ejei
e;reg=e-e=0 (wheni=j)

This is, in 3 dimensions:
(31)2 = €16 = ||e1||2 =011

(92)2 =66, = ||ez||2 =022
(93)2 = é3e3 = ||e3||2 = 033

€16, = —€z6;
€63 = —€36,
€361 = —€16

The last three equations are key in orthogonal metric and are the ones that will make work-
ing with bivectors or the trivector much easier. Because they permit us to swap the order
of the vectors in any geometric product, just adding a minus sign for each swap. These
means that the result will be the same if we make an even number of swaps. And will be
the negative of the original if we make an odd number of swaps.

An example. We have the following trivectors and we want to sum them:

7eje,e3 + 2e,e 63

We swap e. and e; in the second element and we add a minus sign. This is the same as
using one of the equations above.

7eie,e5 — 2e,e,e3 = S5eje,e3
But, take into account that when a basis vector is squared, it is converted to a number, so it
does not count as a vector anymore. It is just a number that can be moved in the product
not changing signs. For example:
7eje,eze, + 2eq63

We swap ez and the last e; in the first element, adding a minus sign.

—7eje,e,e3 + 2e5eq
Now, we perform the square of ey, getting its norm and converting it into a number.

—7ei(e;)?es3 + 2eze; = —Teylle;||?e; + 2ese; = —Te gaze5 + 2e5,

Now, g22 is just a number, so | can move to the beginning of the element (not changing the
sign), we are moving a number, a scalar, not a vector:

—7e1922€3 + 2e3e; = —7gpe13 + 2e364

11
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And now, we exchange e; and es in the first element and yes now, we have to add a minus
sign (multiply by -1).

—7g22€163 + 2e3e1 = 7gyreze1 + 2eze; = (795, + 2)ezeq
If instead, we swap the e1 and es in the second element we get:
—7gaze163 + 2e3e; = —7g;ze103 — 2e163 = (=7gz, — 2)ese3 = —(7952 + 2)es3
This is the negative as the first result, but take into account that the vectors that multiply
are reversed, so in fact, it is the same result. | could swap them and change the sign again

and both results will be the same.

Another way to see it is using the nomenclature we have defined in the beginning of the
chapter:

(7922 + 2)eze; = (79,2 + 2)es

But in the second case, we have to reverse to be able to use that nomenclature. Swapping
the vectors and adding a minus sign (changing the sign):

—(7922 + 2)eje5 = _(_(7922 + 2))3331 = (7922 + 2)eze; = (792, + 2)es
For more info regrading this type of operations you can check [1][2][3][4]1[5][6].
As commented, all these swapping’s with changing of sign can only be applied in orthog-
onal bases. In non-orthogonal bases you should apply the equations in the beginning of

chapter. 3.3.

Knowing this rule, I would just show the squares of the bivectors and the trivector to check
that they are in fact negative:

(e4)? = (ez63)* = eye3e,03 = —ey03030, = —€,033€; = —J33€,€; = — 33022
(es)® = (e3e1)? = eze eze; = —ezejeje3 = —e3g11€3 = —g11€3€3 = — 11033
(36)2 = (9132)2 = €1€,€16) = —€1€26261 = —€102261 = —Yg2261€1 = —F22011
(e7)? = (e1e,63)% = e1e,e3e1€,03 = +e,€,€3831€, = (331,618, = —(33€1€1€2€; = —J33011022

Remind that the gj; are just numbers, so you can move them as you want along the product.
| keep the order obtained in the operations to facilitate the understanding, but you can swap
them as you want not changing the sign or the result.

Just to close the chapter, | will comment that an entity that is composed by the sum of
scalars, vectors, bivectors etc... is called a multivector. As an example:

A =3+ 2e; —3e;+7e3e;

This entity A is called a multivector. We will see that in Geometric Algebra any object can
be defined by a multivector expression.

The most important comment of this section is the following. In Geometric Algebra, once
you have defined the number of dimensions (in this case 3) and the consequent degrees of
freedom (or different basis vectors and their combinations, in this case 8, from e to e7), it
does not matter how many operations (sums, geometric products, even exponentials etc...)
you do, the number of basis vectors and their combinations are always the same (8 in this
case). You can multiply the times you want any multivector by another one, you will only
finish with 8 coefficients that multiply 8 basis vectors from e to e; (considering also basis
vectors their product combinations). Nothing else. This is key in Geometric Algebra and
its power.

12



J.Sanchez

If you are familiarized with matrices, tensors or tensors products, you know that in those
cases the number of elements could grow to infinite (the number of dimensions also). In
Geometric Algebra, there is a limit. And this KEY as we will see.

3.6. Geometric Algebra Cls,0. Comments about eo and e7
Before, | have commented that the natural move is that:

eo = 1
And in general, this is what | would have written in any of my previous papers. But in this
case, as we will see later, it is possible that we need a “degree of freedom more” or the
possibility that e is a scalar function that depends on certain parameters that we will see

later.

So, instead of defining eo equal to 1, we will define it as a scalar (this is important, it is a
scalar or a function whose output is a scalar, not vectors, not bivectors etc...):

€0 = /Y00
So:
(e0)* = lleoll* = goo
As commented goo, is a scalar or a function that outputs a scalar (positive-definite). The
problem is the conceptual meaning of eg and goo. Normally goo would mean the scalar prod-
uct of vectors. In this case, it is not that. It is a function that appear only at certain operations

that we will see later.

Regarding the possible values of goo are (we will comment later):

Joo =1
Joo = llesl*llel1*lles]l®
1
Yoo =
lleq lI%lle-[11les]]?

Joo = independent scalar function (positive definite)

As commented, we will keep this nomenclature of goo as in the end it is discovered that it
is equal to 1 or to whatever other result we will substitute in the equations. If we put directly
that it is equal to 1, it will be more difficult to modify the equations.

Anyhow, for the shake of simplicity for orthonormal metric, we will consider ep=1 as it
should be, except exceptional situations. For other metrics, we will keep it indicated as eo.

Regarding e; the important property as commented is this:

(97)2 = (313233)2 = €1€,€3€1€2€3 = —033911922

This means, its square is negative, and it is a “neutral” vector. Meaning “neutral” that it
does not have any “preferred” direction or orientation. The bivectors es, es, s have also
negative square but with “preferred” directions.

(64)2 = (9293)2 = €2€3€6263 = —(033022
(es)* = (ese)” = ezejeze; = —gq11933

13
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(96)2 = (3132)2 = 6162616 = —0g220911

But e7 has a negative square and does not point anywhere specific. It applies to the volume
in general (not a surface or a line). If you have read the papers [4][5][6] probably you have
already seen the possibility that the time vector can be associated with e; (the trivector).
The reason is that the square of e is negative and that taking this consideration is com-
pletely coherent with Dirac Equation, Maxwell equations and Gell-Mann matrices

[5][6][26][63].

When we come to general relativity, the thing gets more complicated. We will see that
depending on the context, the scalars eo (as considered in APS[43]) or the trivector e; can
represent time depending on the context. We will see later, but first we need to understand
the spinor in Geometric Algebra to understand the different possible contexts.

What we will keep from previous papers [4][5][6][26][63]is that as the square of €7 is neg-
ative and does not have any preferred direction, when the imaginary unit i is used in tradi-
tional algebra, we will substitute it in Geometric Algebra by the trivector e;. The reason is
that in Geometric Algebra there are already elements as e; (appearing in a natural way)
whose square is negative.

And the imaginary unit i is used in traditional algebra as an “unknown or generic” element
whose square is negative. In Geometric Algebra, what you have to do is, depending on the
context, to use the corresponding already exiting element in the Algebra (of all the ones

whose square is negative) instead of using i. As commented, we will used ey for the reasons
commented above.

4. The reverse of a multivector and the reverse product

If we have multivector, the reverse of it can be defined as a multivector with the same
coefficients but where all the products of basis vectors are reversed. An example:

A =3+ 2e; —3e; + 7eze; + 2e,e5 — Seje,e;
Its reverse will be:
AT = 3 + 261 - 361 + 76163 + 26263 - 5@362@1

This in orthogonal metric (not in general) can be converted using chapter 3.2 equations
into:

At =3+ 2e; —3e; — 7Tese; — 2e,e5 + Seje,e; = A
Being A" the conjugate multivector. This means, in orthogonal metric the reverse of a mul-
tivector is the same as a conjugate of the multivector. The conjugate means changing the
sign of the elements whose square is negative (this means: bivectors and trivector) and
keeping the same sign for scalars and vectors (whose square is positive)

In a non-orthogonal metric, you should use equations in chapter 3.3 instead of those in
chapter 3.2, so in a general case, reverse and conjugate will not be the same.

Anyhow, as commented, in this paper we will focus on orthogonal basis, so here reverse
and conjugate will be the same in most cases (but this is not true for a general case).

Calculating the reverse for the different basis vectors, we have:

T _
ey, =€
t_
el =e
T _
e, =e
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e; =e3
eI = (e263)" = ese,
e;r = (ese)) = eye5
eg = (e162)" = eze;
e; = (‘31‘32‘33)-r = €366

One important property is that a product of basis vectors multiplied by its reverse is always
positive definite (also in non-orthogonal metrics):

eoe(;r = egey = llegll* = goo
elef =ee; = |leg|l> = g1
eze; = eye; = |lell* = 922

e3e;r = eze; = |lesll* = g33

9491 = e,e3(ee3) = eye3e38;, = €,033€, = g33€,€, = 33922 = Gaa

eSe;r = eze;(e3e1)T = ezejeie3 = €3911€3 = 9116363 = 911933 = Jss

eéeg = ejey(e1e)T = eje 00, = €19551 = grze1€1 = 922011 = Jes

676; = ejezes(ere,e5) = eje,05e5e00) = 953€1€2€261 = g339,,€181 = J339,,91, = 977

Where | have defined the g; as the result of these products also for basis vectors with i>3.
And also, as commented it is defined a goo as the square for eg to have one degree of free-
dom more (even that very probably defining it as 1, should be ok, meaning just a that pre-
normalization has been de-facto done).

As you can guess, the reverse product is just defined as multivector by the reverse of other
(or the same) multivector following the rules commented above.

An important thing to comment, is that the reverse should not be mixed up with the inverse.

The inverse of a product of basis vectors is defined as the inverse of each basis vector in
reverse order. This is, for example:

(e7)™! = (ere363) 7" = (e3) 7' (€)' (ey)t = e3e?e! = ¢

Where in the last steps above, | have used the definition of the superscripts as defined in
chapters 3.1, 3.2 and 3.3, as the inverse of the basis vectors. We can check that this hold:

e,e’ = eje,esedelel =ee,-1-e%el=¢; -1-el=1

So, in fact, it corresponds to the inverse of e;. The same applies, to the rest of vectors:

(91)_1 =e!
(32)_1 = e?
(e3)™ ' =¢é?

(ex) P = (eze3) ™ = (e3) Hey) P =e3e? = et

(es)™! = (eze;)™ = (e)) M(e3) ™t =ele? 5

I
®

(e6)™! = (e1e2)7! = (e) 7 (e)) ™t = e?e?

(e,)7! = (e1eze3) ™! = (e3) 7' (ex) 7 ()™ = e3e?e! =€’

Il
®

So, you can see that the inverse, also reverse the order, but besides that, it inverses the basis
vectors (converts the subscripts in superscripts and vice-versa).
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5. Spinor in Geometric Algebra Cls0

A spinor in matrix notation has this form:

lljlr + wlii
Yor + ol
Yar + 3l
llj4r + 1p4ii

1!):

As you can see, it has eight parameters:

Yir Y1i Yor Yo Yar Y3 Yur and Py,

In Geometric Algebra, the spinor has this form:
Y =le, =Ye +les + e, + P es + Ytes +Ytes + e + Y ey

Where the e; are the elements (scalars, vectors, bivectors and trivector) as defined in chapter
3.5.

The ' are the coefficients of the spinor or wavefunction. You can see that they are also
eight as in the matrix notation. You can find a relation between both in [5] [31]and [63].
There you can find that that relation is coherent with Dirac Equation and Strong Force
Interaction (Gell-Mann matrices).

For this paper we will just stick to that these 8 coefficients are sufficient to define a spinor
or wavefunction. And calculating them is what we need to define the state of a particle or
a related filed.

6. Probability density and probability current

As we saw in [63] we can calculate probability density and probability current multiplying
the reverse of the wavefunction by itself, this way:

Yl = (YO + el +y%e; +Ple] +yltef + Yool +ylfed +Y7e)(WOeo +Yle;
+Ple; +Pes +hte, + Ptes + PPes +17er)

Where all the vectors, bivectors and the trivector and their reverses, are as defined in chap-

ter 4 and previous ones.

Only in the case of orthogonal metric (not in the general case), this can be simplified as
(the reverse is the same as the conjugate):

PIY =Y h = WO + Yle; +PPe, +Pies —hte, — Pies — Poes —Y7e,) (Y0
+les +YPe; +Pies + e, +Ytes + Ytes +y7e;)
As you can see in Annex A2, the result of this multiplication is for the orthogonal case is:

Yl =p+j
Being:

p =%+ WH2g11 + WGz + W3)2g33 + @)% 922933 + W°)2g33911 + W)*g11922
+ (¥7)%911922933
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J= 2@ — p*POga, + PP gss + Y7 gan933)es
+ 2(+P°P2 + P1POgiy — YrPRgss + PP gssgin)e;
+ 2(+p°y3 — P15 gyq + PPt gan + oY g11922)es

Being p the probability and j the fermionic current.

But we can say that even in the general case where the basis is not orthogonal or even if
the product above is defined another way, the result will have for sure have this form:

1,DT'¢’ = jﬂeu

In Annexes Al, A2, A3 and A4, you can find that in whatever metric you are or however
this product is defined, the result will always have this form:

dﬁlp = j#eu

Where p and v go from 0 to 7 in the most general case. This means, independently of the
metric, independently if the product is correctly defined or are some elements pending (see
Annexes Al, A2, A3 and A4 for details), what it is true is that the result, will have the form
above.

Even if we calculate wrongly the coefficients of j*, we can continue with our study as these
coefficients will represent a general case. In case they change the value, we will change the
operations done, but the study following will be perfectly correct as the meaning of the
coefficients j* is general. This is the power of geometric algebra. We know the form of the
results even if we have calculated them wrong. We know that the result will have 8 com-
ponents j# (very important, scalar coefficients or functions that output a scalar) multiply-
ing 8 basis vectors (considering their product combinations also, this means, considering
them from e, to e7).

Last comment to make are the measuring units of this j#e,. For the j° component the units
are density of probability in 3D space, this means probability/cubic length. Probability does
not have units, so it is L.

The components j* to j® are called the probability current and its units are density of prob-
ability multiplied by velocity. As probability does not have units, the density has L and
the speed has LT, the total units are L2T"2. To make these units coherent with j°, we have
to multiply j° by ¢ (the speed of light) or the opposite, to divide the components of j* to j°
by it.

As commented, for orthogonal basis, j* only has components from 0 to 3. For the general
case, it would have components from 0 to 7 and the measuring units should be harmonized

with the units that have the components from 0 to 3. But we will not care about that now,
we will just consider that we can find a coherent following expression with coherent units:

Php = jhe,

Just to finalize, 1 will comment that to be consequent with certain papers in the literature,
sometimes | will use the following nomenclature, but you can check that the concept is the
same, just changing the name of j to V, and the dummy index form p to p:

YTy = jie, =VPe,

7. Definition of Covariant Operator in Geometric Algebra

We will define the following operator:

17



J. Sanchez

ety
u
Where ¥, is the covariant derivative. This means, if it is applied to a scalar function, it
will be just the partial derivative with respect to p of it. If f is a scalar function:

Where the partial derivative is taken respect to the coordinate variable that corresponds to
the vector e,. This means, that de® would mean derivative to the coordinate variable as-
sociated to e; (typically x in cartesian coordinates, or r in polar coordinates or called e! in
the general case). It is important to recall that in this paper, the coefficients that multiply
the vectors ar scalars (not “covectors”), so the rule above, apply to them (to the coeffi-
cients). It does not apply to the vectors as you can see below.

If the function includes vectors, apart from the partial derivative of the coefficients that
multiply these vectors, we will have to apply the covariant derivative to the vectors.

The covariant derivative of the basis vectors (you can check this in different literature of
Relativity or Riemann geometries [58]-[62]) are the Christoffel symbols. So, in a general
case:

etV (f'e,) = e*(V.f)e, + e f"(Vsey)

Where we have used the product rule of the covariant derivative of a product. And we are
keeping the same order of the elements (mainly vectors). Remember they are nor commu-
tative in the general case.

Now, for the scalar coefficients f* we can use the same equation shown before (partial
derivative equation). For the other term (the covariant derivative of a basis vector) we will
use the Christoffel symbols as they are defined [58]-[62].

v

d
et (fVe,) = e*(V,fV)e, + etfV(V,e,) = e# o & +etf'T e

As the partial derivative of the coefficients of f and the Christoffel symbols are just scalars

(yes, in this context, Christoffel symbols are just scalars that multiply vectors) we can move
the vectors as follows:

erT,(fre,) = et

4 v
vri —
Sor e, +etf [hen = ete,

Py +ete f'TA

Another thing to comment is that we can calculate also the covariant derivative of the in-
verse of a vector this way:

Vs(eulea)™) = Vp(eue®) = Vp(8) = 0
VB(eﬂ)e“ + eHVﬁ(e“) = Féluele“ + eHVﬁ(e“) =0
eHVﬁ(e“) = —F;Hele“
e,Vg(e®) = —F;HS/{"

e,Vg(e®) = _Ft?u
ete,Vp(e®) = —Ig, et
Vp(e®) = —l“,;"#e”
So, this above, added with classical definition covariant derivative of basis vector:

Vp(ey) = l"[?aeu

They are the ones we will need in following chapters. Also, to comment something that we
will need in some steps. The geometric product is not commutative in general. But some-
times we will have to commute the vectors. To do so, we have to consider one of these
three scenarios:
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e The metric is orthogonal. So, the geometric product is the same as scalar product,
and therefore commutative.

e Weareinasituation as in chapter 3.4. This is, the symmetry of the sums in certain
situations, “convert” the geometric products in scalar products. So, the same as
commented above applies.

e  The other option is directly that we are forced to change the definition of the op-
erators, using scalar products instead of geometric products. As an example, in
certain situations, we can say, instead of using the operator:

ety
We could decide to use:
eM . Vﬂ

Loosing generality (all the non-commutative elements will be lost), rigor and

probably some solutions, but as a way to move forward.

Just to finish we will define the reverse (the reverse not the inverse) of the covariant oper-
ator to a function f as:

+
(e47uf)’ = fuler = (f7)et = (Vuf)e
This means, when we see the reverse operator, we have to take into account these things:

e  The operator applies to the function on the left of it (not on the right as it is usual).
e The vector that accompanies it, it is located on the right of the operator, not on the
left as defined from the non-reverse operator.

Probably you are asking why the vector that accompanies the function is not reversed as
well. In general, | would say that the logic thing would be to reverse it. Creating sometimes
changes on signs (or even real changes in result in non-orthogonal metric). In this paper |
will keep it as not reversed to facilitate the things and the message, but it could be that in
the future, the definition, changes to reversed.

Also, you can ask why the f is not reversed as well. The answer is that to keep the sym-
metry, it should be reversed. But to simplify the nomenclature, we will keep f not reversed,
and just indicate it directly if this is the case.

Another thing we could think about is that if the operator is reversed, we should add a
minus sign to the derivative as we are deriving in the opposite direction to the one repre-
sented by the variable. This is true in fact. But as we will always make double derivatives
(in the left and in the right, see later), in the end, this will only lead to a change of sign in
the final results, not affecting the implicit meaning. Anyhow, this is something that proba-
bly has to be taken into account in the future (and also if it is needed or not to reverse the
vectors that accompany the derivative/del operator).

The last comment is that in Geometric Algebra everything is done keeping symmetries.
When a double operator has to be applied (like a Laplacian) it is not generally done as a
double operator on the left. Instead, it is done like a simple operator in the left and another
simple operator on the right (that is applying to the elements on the left).

The reason for this is that in geometric algebra the order of the vectors matters. As it is not
the same pre-multiplying than post-multiplying. Because the products are not in general
commutative or anticommutative, it depends on the product itself (the number of vectors
and its grade). So, the only way to keep the symmetries is to keep the balance of operators
on the left and in the right as much as possible.

When this happens, we will have the convention that we will start applying the reverse del
operator (the one in the right, and afterwards the non-reverse del operator, the one in the
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left). This is just by convention. Taking into account that normally we work with commu-
tators in our calculations, a change of this will only lead to a change of signs in the final
results.

Apart from this, this will let us also facilitate the factorization of the equations that will be
key to simplify them in following chapters.

8. Ricci tensor in Geometric Algebra

As we can see in different papers, the Ricci Tensor can be considered as the Laplacian of
the basis vectors. Taking into account what we have commented about the covariant deriv-
ative in the previous chapter, we can calculate the Laplacian as a covariant derivative on
the left and another covariant derivative on the right. And to be in the most general case as
possible, instead of applying to the basis vectors, | will apply to a complete field that in-
cludes coefficients and vectors:
VPe,
If you want to apply only to basis vectors just consider:

VP =1 foreveryp
And:

vi=0
s
Where the comma represents partial derivative with respect to ex.
Ok, so let’s apply the operator defined in chapter 7 to VPe, to the left and the reverse of it,
to the right. We will start operating the one of the right (the reverse operator). This is just
by convention as commented in chapter 7. If we do the opposite, we will obtain a different

result. But we will see that it does not even really matters, as we will perform also this
operation later.

e”VquepV:r,eV

etv, ((VpepVT,)e")

e”VH(VvV"ep)e"

etv, ((Vvaep)eV)

Very important to remark the coefficients V? are just scalars. Their covariant derivative is
just the partial derivative.

And for the vectors, we will apply the equations shown in chapter seven:

Vs(eq) = Tg ey
Vg(e®) = —Ig,e*
And to remark that in this context, the Christoffel symbols are just scalar coefficients, that
multiply vectors. So, the covariant derivative of the Christoffel symbol itself is the partial
derivative. The covariant of the vectors that accompany them will be done naturally fol-
lowing the derivative product rule.

We start calculating, the expression inside the brackets:

V,VPe, = Ve, + VPIY,e,
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I change the name of the dummy coefficients for convenience and to follow [57]:
V,VPe, =Vye, + VI, e,

Now | just post-multiply by the vector that appeared in the original equation at the begin-
ning of the paper:

(V,VPe,)e¥ =Vie,e¥ + VT e e?

Now, | proceed with the covariant derivative that was in the left (that applies to all the
expression above, including the two vectors):

Vi (WVPe,)e”) = Vu(Viepe” + Vo e e’) =
P P P
Vyuepe” +V, T5 e e’ =V, e, lize’ +
+VITh e’ + VoI, e,e’ + VI T e;eV — VoI e I et =

I change again the name of dummy variables to follow [57] nomenclature:

P v AP v _ P ALV
Vouepe” + Vil ee” —Vieliye” +

u
orP v orP v orl rP v _yorP ALV
+Vihsepe” + VoL, ee” +V I‘WFMepe Vot e lne
P v AP v _yPri v
Viuepe” +Vilh,epe” —ViTivee” +

u
+V T ,e.e” + VITy, se,e” + VI T) eje” — VT, T ee”

4 vo,u

Now, we pre-multiply by the vector as it was stated in original equation in the beginning
of the chapter:
e”VquepVT,e" =
etv, ((Vvaep)e") =
Vyuete,e? + VITy etese” —Villete,e” +

orP LUy, L,V L VOTP LUy, oV L VOTA TP LU vV _yorP rid o, pV
tVilsetee” + VoD, efee” + VoI I; efeye” —VOIG I efepe

Now, we calculate the result with the operations reversed. This is, the operator on the left
with respect to v and the reverse operator in the right with respect to .

e"VVV"epVZe” =
e'v, ((V#Vpep)e”) =
Vieve,et + VAT eVe et — V‘fl“fue"epe” +
+VITh eve,et + VoI, eVeel + VITLTL eVe,et —VoIy T eve e

Noe, let’s calculate the subtraction of one to another (let’s say the commutator of this op-
eration):
e"VHVpepVIeV - eVVVVpepVZe" =
V_fue”epe" + V,fl“fue”epe” - V‘fl"jve”epe" +
+ViTh ete,e’ + VT, etee” + VOTLTY ete,e” — VOIL Thete e —

U v vo,u Vo< Au
_yP L,V U _ y7ATP L,V u Pri ,v u
Vie'eet =Vl eveet +V Ty, e"eer +
_yorP ,v u __yorP v U _yori rP ,v u orP rd v u —
Vilse'epe Vol sve’eye Vol e"eet + VOl IV, eve,er =

To be able to perform, this operation we have to be able to “move” vectors inside the prod-
ucts. This can only be done if we are in one of three cases commented in chapter 7.
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So, we will consider that we are in one of these three cases (the most typical, we are in
orthogonal metric) and let’s move the position of the vectors inside the products at our
convenience:

e”VquepVT,e" - eVVVVpepVZe" =
Vyuetese’ + ViITy etese’ —ViTLete,e” +
+V T ete e’ +VITy, etese’ + VIT), T, etese’ — Vo) T ete e —
—Viete,e” —VIT) ete,e” + Vil ete,e” +
VT ete,eY —VolL ete,e’ — VI TL etee¥ + VoI Tt ete,e? =

We see that the only elements left (the ones that do not cancel) are the ones in bold. See
[57] for more info.
VP ete eV + VITL ete e¥ — VITAete eV +
VU p WV Au p Atuv p
orP LU, L,V orP LUy pV oA 1P LU vV _yoTP 11 U v _
+Vilsetee” + VoI, efe e’ + VLT efe,e” — VoI T efepe
_UP Lu vV _ yATP L1 v PriA Lu v
Vetee” =Vily etee” + V)T, efe,e” +
_porP ,u V_yorP plhp pV _YOTA TP plip pVv orP 1l Lu v —
VylLcetee’ — VoI, efe,e’ — VI T efe,e” + VoI, I, efee” =

This is:

= V(0 + DTl — T, — TATY, Jeteye”

vo,u uo,v uot v

= V(0 = b + ToTf, — TATY, Jeteye”
As Ve and the Christoffel symbols are just scalars in this context | can move it freely inside

the product.

= (N0 = T + TL Ty = T T, Voete e =

— pP [ ") v
=R,V eteye

Where ng is the Riemann tensor, as commented in [57].

Now, if we consider that we are within one of the three cases commented in chapter 7, we
can consider that this product is scalar and therefore:

Up — ph. N
ele,=¢e’-¢, 6p

So:

RP

oLl v — pP agsH, v _ pH g,V
oV ete,e’ =Ry, Vo6,e" =Ry, Ve

ouv

Now checking [57] we can see that the last element is the Ricci tensor.

RK VeV =R, Ve

ouv

So summing up we can say that (in the last step, | have just used the property that dummy
indices can be renamed as convenience:

eV, VPe,Vie" — eV, VPe,Viet = R, V7e” = R, V¥e"

If we want to isolate the Ricci tensor, we could do:

(Ravvgev)evva =R, VeveV; =RsV?-1-V; =R5 VY, =Rg,
(ekV,VPe,Viev —e'V,VPe,Viet)e,V, = (R, Ve )e,V, = Ry,

Ry = (eFV,VPe,VieY — &'V, VPe,Viet)e,V,
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If we want to calculate the Ricci scalar[57]-[62], we can do:

R =g°R,, = g""(e“VﬂVpepVJ:e" - eVVVVpepVZe“)eVVU
= (e"VquepV,te" — e"VVVpepVZe”)gm’evVo

Another way to obtain it (but not isolating it):

(ehV,VPe,Vie — €'V, VPe,Viet) = Ry, Voe”
g°tg? (e"V#VpepV]:e" - eVVVVPepVZe“) = g°*g"?R,, Ve
g”’lg"e (e”VquepVIe" - eVVVVpepVZe") = RMyoev
9209°*9"° (e"V#VpepV];e" - eVVVVPepVZe“) = g,gRMVe
9209°9"° (e“V#VpepV,te" - e"VvV”epVZe") = RV
g””(e”V#VpepV,tev - e"VVVPepVZe”) = RV

9. Klein-Gordon equation of a field

We consider the definition of stress-energy tensor of a scalar field [65]-[67]. We will not
use natural units. It is better to use real units with factors so we can control that the meas-
uring units of the variables are coherent:

G;Lv = Tuv = thaud)avd) - hzguvgaﬁaad)aﬁd) + g,uvmzczd)Z

We divide by 2m:

h? 1hn? B 1 2 2
Tuv = Eau(pavd) - E%g,uvg aa(:baﬁd) + Eg,uvmc ¢

It is important to check that the measuring units are coherent. %2 units are Energy-L?. But
there are always two derivatives with respect two spatial coordinates that creates a L2. So,
the units of the first two elements are energy. The last element mc? is energy also. So, in
principle ok. But the stress energy tensor should have units that are Energy-L-. Do not
worry, we will solve this later, as the field that only appears in the right-hand side elements
will have L units, leaving everything ok.

The first, thing we will do is to apply the operator we defined in chapter 7. But as there are
some vectors missing to be able to do that, we will just multiply and divide by them, leaving
everything ok.

h? R © g, o1 242
Ty =Eeﬂe”6#¢6v¢e ev—zggwg eqe 8a¢aﬁ¢e eﬁ+zgwmc o)

hz v 1 h'z ap a B 1 2 42
T, = Eeu(e"a#qbavd)e )e,, - Eagm,g ea(e 0. p0ppe )e/; + ngmc [0)
And here’s the drill. Instead of applying this to a scalar filed as it was original conceived
by the equation, we will apply it to a vector field. We have the tools commented in chapters
7 and 8 to make all the operation so we can do it. We will apply to a general field that is:
VPe
9]
And the double derivatives, will be left and reverse right derivatives (keeping the symme-
tries as always in geometric algebra), instead of two left derivatives.
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h? 1h? 1

T, = Ee#(e”V#VpepVIe")ev - EEgﬂvg“ﬁea(e“VanepVZeB)eﬁ + ngmczV”ep

I add the following elements to the equation. I can do it, because its sum is zero:

h? 1 h?
- Eeﬂ(eVVVVpepVZe”)ev + EEguvg“ﬁea(eﬁVﬁVpepvle“)eﬁ

h? _ 1h?
+ Ee#(eVVvaeque")ev - Eggwgaﬁea (eBVﬁV"ePV;e“)eﬁ

Once added, we have:

h? 1h? 1
T = Ee#(e”V#VpepV:Ee")ev — EEgﬂvg“ﬁea(e“VanepV;eﬁ)eﬁ + ngmczV”ep
h? 1h?
- Eeﬂ(e"VVVPePVZe“)eV + Ezgwg“ﬁea (ePVgVPe,Vie)es
h? v pp vl on 1h? ap B pp vl o
+ Eeu(e V,Vfe,V e )e,, - Eagwg ea(e VglVPe,Vye )eﬁ
Reordering:
h? h? -
Ty = Eeﬂ(e”V#VpepV]:e")ev - Zeu(eVVVVPePV#e”)ev
1n? ap a p t .8
— Eﬁg#"g ea(e V.V epVBe )eﬁ

1h2 1
+ EZgwg“ﬁea(eﬁvﬁw’epvze“)eﬁ + ngmcszep

h? v p tou 1h? ap B p ta
+Ee#(e V,VPe,V, e )ev—zggwg ea(e VgVPe,Vye )eﬁ

Factorizing as possible:

hZ
= Eeu(e”V#VpepVT,e" - eVVVV"epVZe”)eV
1An?
B E%guvgaﬁea(eavavpeﬂvgeﬁ - eBVﬁVpepVLe“)eﬂ
1 , h? "
+ zgwmc VPe, + poo e#(eVVVVpepV#e”)ev
1An?
~ 5 g gPea(ef VgV e, Ve e

T

Applying the relation to the Ricci tensor commented in 8:

h? 1hn? 1
Ty = Eeu(RMV"el)ev - Eﬁgwg“ﬁea(RﬂV"el)eﬁ + Egm,mcszep
h? 1A%
+ Ee#(eVVvaepVZe”)ev - Eagwg“ﬁea (eﬁV,;VpepV;;e“)eB

Now, again we will suppose that the vectors can be moved inside the product, following
one of the three possible cases commented in 7 (orthogonal metric, sum over symmetric
elements or defining from the beginning that the products are scalar instead of geometric,
losing solutions and rigor).

h? 1 A2 1
Ty = —euey (R2Voe?) — Ezgwg“ﬁeaeﬁ (Rs2Voet) + Egm,mczV”ep

h? 1h?
+ Ee#ev(e"VVVpepVZe”) - Ezgwgaﬁeaeﬁ (eBVBV"epV:;e“)
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If the products are scalars (following the three cases in chapter 7) the geometric product of
two vectors is the metric (or delta if they are inverse).

h? 1 h? 1
Tuv = Eguv(RUAVJeA) - E%g,uvgaﬁgaﬁ(RaAVo—el) + Eg;wmczvpep
h? v p tou 1h? af B p t,a
+ ng(e v,V epV#e ) - Ezgwg gaﬁ(e VBV epVae )

Operating:
h? 1h? 1
— A A
T#V - Egyv(Rgﬂvae ) - EEQ#V(RJ)LVUE ) + Egm,mcszep
n o . 1n? .
+Eguv(e VvaepV#e”) - Ezgw(e VBVpepVae )

Changing the dummy variables names:

h? o1y 1R oo 1 )
Ty =Egm,(RﬂV e )_EEQ”V(RMV e )+§gwmc VPe,
h? B Toa 1h? B toa
+Eg‘”’(e VgV PepVye )—Ezgw(e VpVPe,Vie®)

Operating:
1 hZ 1 1 hZ
T#v _ EEgW(RMVGeA) + EgﬂvaZVpep + Ezgw(eﬁvﬁVPePV:;ea)

1 A2 o 2 1 2 1h° B t o a
T;w =§EQ#V(RUAV e )+Eguvmc Vpeﬂ+zagl“’(e VﬁVpepVae )

Now I multiply by e.e° to simplify the operations and get to the Ricci scalar. | could obtain

the same result, multiplying by g*°gs:
1h? o, o 1 217p 1h? B D T a
Ty = E;guV(RMV e‘ese )+Egm,mc VPe, +§ng(e VglVPe,Vze )
Here, | can move the vectors inside the product considering the 3 cases of cahpater 7 (this

is not even necessary if | use g*°gs, instead of e.e°:

1h? o A,0 1 2 17 B Tea
Ty =EEQ“V(R‘"1V esete )+Egm,mc V"ep+zagw(e VpVPe,Vye )

1n? o Ao 1 2 1h? B Tt ,a
Ty = EE‘QW(R‘MV esg ) + ngmc Vpep + EZQ”V(e VBVpepVae )
Now, | just change nomenclature of dummy indices:

1ht Ap P ! 2yp 1ht By, VPe Ve
Ty =§ng(g R,V ep)+zgw,mc 14 ep+zagm,(e VgVPe,Vie®)

The following move, | am not sure if it can be done or not. If it cannot be done. Just sub-
stitute R by g*PR,, in the following equations.

1A 1 ) 1A P toa
T = Eagw(RVpep) + Egm,mc VPe, + Eagw(e VpVPe,V e )

1 h? 2 1h? B ta
Ty = Eg/w ER + mc Vpep +§Eg,w(e VﬁVpepvae )

Here, it comes another drill. We have seen that the solution to:
Py = jre,

And just changing nomenclature, we can consider that it has the form:
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wTw :j#e# = Vpep

So why not applying the above equations to Ty when appears VPe,? This is to apply
the equation to collapsed waveform of a particle. This is to its probability and fermionic
current. As you know the units of Ty is L. This is because the probability does not
have units, but T represents the density of probability. This is probability divided by
volume (L3). So here, we solve the issue of the measuring units. They are Energy-L3 in all
the elements.

1 h? 2\t 1h2 8 fot a
Tuvzfgw ER+mc P 1/)+5ng(e Ve Ve )

1 [ h? 2 + 1h? B tnot ,a
Ty =3 ER+mc e, 1,bev+zzeﬂ(e VppTPVze )ev

Oner thing we could do to simplify even more, considering we can move the vectors freely
inside the products and that they are scalar multiplied (3 cases of chapter 7) is:

1 hz 2 + 1h2 ﬁ T T«
Ty =3 ER + mc® | e, e,y ¢+§Eeﬂev(e VppThVse )

1 (h? 5 + 1 h? 8 bt a
T#VZE ER +mc? | g ¢+Eagw(e Ve TPVye )

Now, we can define a multivector (not even tensor):

wv 1(n 2| quv t 1h? wv B vl o
T=g"Ty =5\ —R+me|g" g™ +-—g 9, (ePVpTyYvie?)
2

Which result is not a scalar. It is a multivector with elements in the eight vectors (scalars,
3 vectors, 3 bivectors and trivector).

uv 10 2 |yt 17 B tyvle?
T=g"T, =5 ER+mc 1/)1/J+§E(e Ve ll)Vae)

Above, the stress-energy tensor is treated as independent of the particle, or the field we are
considering. Below, we will see two examples of using this equation, taking into account
possible relations between the particle and this tensor.

9. 1 Considering that the stress energy of the particle is the one of a
point particle

If we follow [68][69], we can consider the stress energy tensor, just relates to the energy
and momentum of the particle. Being coherent with the units, one option could be the en-
ergy density of the particle defined by its waveform collapse (squared by its reversed). The
units are coherent Energy-L-3 and for the cross elements Force-L2 (pressure) that has the
same units as Energy-L=3. So, a definition could be:

T, = mc?e,ptipe,
I remind you that:

Wiy = prelyve, = (Yol +ylef +y2el +ylel +ytel +ySel +ydel +y7el) (W0,
+le +Pe, +hies + e, +1Pies + Yles +7e;) =

WO + YPle; + e, + 3z + Prese, + Pieiez + POese; + P eze,e)) WO + YPley 4+ Yle;
+Ples + Pleses + Peze; + Yoere; +1P7e ese3)

So, this is in fact a complicate operation, not a trivial one, with one scalar as result. It has
result in all 8 vectors (scalars, 3 vectors, 3 bivectors and the trivector).
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You can see in Annexes Al, A2, A3, A4 different examples of the calculation. For exam-
ple, the most simple on (orthonormal metric) Al, gives:

Yy =p+j (29.1)
With:

And p=@"%+@H%+ @2+ @+ @M+ @) + @) + W7)?
na.

J=2@"° = P*Y° + P35 +P*pT)ey + 2% + Pt — PPt + pSPT)e,
+ 2% — P Y° + PPt + oY )es
So considering the definition of the Stress Energy tensor, as commented above:
T, = mc?e,ptipe,
And introducing the equation found in the end of chapter 9:

1 (h? 5 + 1 h? 8 bt a
T#VZE ER +mc? | g ¢+Eagw(e Ve TPV e )

1 (h? 1 A2
mc?e,pipe, = > <ER + mcz> e, pipe, + Ezeu(eﬁvﬁwﬁpﬂe“)ev

1/h? 1 A2
— T
mc?e,phipe, — 3 <ER + mcz) e pipe, = Eae#(eﬂvﬁzphpvae“)ev
1 (h? 1 h?
-3 <ER - mc2> e pTpe, = Ezeu(eﬁvﬁlp“dﬂ;e“)ev
1

2 h? t 1h? B 0t ,a
> mc _ER ey tpevzzae“(e Ve Ve )ev

h? h?
LN 2 t
Eeu(e VepThVye )ev =|mc _ER e, YTpe,
m h?
e#(eﬁvﬁtphpvge“)ev = ﬁ(mcz - ZR> epTpe,
2
f g Mm h
ePVgytyvye® = ﬁ<mcz - ER) iy

2

m h
PV (Vo (Pipe”) = ﬁ<mc2 - ;R)W

We can see that equation obtained, takes into account to calculate waveform not only the
energy of the particle but also curvature conditions of the the space-time in its position
(scalar curvature R). This is, is like the energy to be taken into account is not mc? alone but
also, we have to subtract the other element:
2 hz
Eparticle =mc m R

Another thing we can see is that the equation is so “simple” that it can be factored (a la
Dirac way) easily:
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In the end the equations in alpha and beta are the same, just reversing sometimes or chang-
ing signs. We could simplify even more:

(Vah)e“e, = J% (mcz —%ZR) peq
— 2 hz
Vb = 7z mc _ER Ye,
Vet = \/— (mc2 —h—zR)e Yt
h? m p

3

3

9. 2 Introducing the Einstein Tensor in the Equation

Coming from the equation we got in the end of chapter 9:

1 [(h? 5 + 1 h? 8 fot a
T =E ER+mc ey ¢e"+§ae“(e Ve 'PVe )ev

And taking the Einstein General Relativity equation [58]-[62]:
816G 1
C—4Tuv = Ruv - EguvR + Aguv

Operating this equation:

C4

Tuv = %(Ruv - %guvR + Aguv)
c* 1 c¢* c*
Tuv = %Ruv - E%guvR + A%guv
r _ C4- 4 C4-

C
= R, ——— g R+ NA——
W =86 W T TemG Im 8 Iw

And now, we introduce in the equation in the end of chapter 9:

1 h2 2\ 1h2 o tot a
T =5 9uv ER+mc Y ¢+§ng(e Ve typvie®)
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c* 1 1 h? ) + 1n? P foot a
ﬁ(Ruv - Eg/,th + Aguv) = Eg/.w ER +mc® | YTy +§Eguv(e Vﬁll} Yve )

2 c*

1h P S 2\t 1
E;guv(e Vﬁlll 1/)Vae )+Eg‘uv ER+mc l/) lp—%(R#V_Eg#VR+AgHV) =0

1h2 5 e L1 (R N, 1
Eaguv (e Vﬁ(va(lll lll)e ))+Egl“/ %R+mc l/) w_%(Ruv_EguvR—l_Aguv):O

This equation above seems (and it is) very complicated but it can be solvable.
The unknow variables are:

o YOyt PiYtytYy’
®  Ji11 922 933923931912 and it could be also g if it is not 1 directly

So, in total 14 (or 15) unknown variables. The equation above, only because it is a multi-
vector equation, is converted into 8 equations (one per type of vector, bivector, scalar and
trivector). So not even counting that it is also a tensor equation also (probably the equations
obtained as a tensor equation are linearly dependent to the ones of the multivector), we will
have 8 equations.

The rest of the equations we will get from the continuity equation[68]:

e’lv,lT =0
With T defined as (end of chapter 9):

w 1/ 2\t 1h? B tot a
T=g T’“’=§ ER+mc 1/)1/}+§E(e Vg l/)Vae)

These are another 8 equations. So, in total, we have 16 equations to solve 14 or 15 variables,
so it should be ok. The system is over dimensioned. This means, we can take some of the
unknowns as parameters, or even normalize the system as convenience (making those free
parameters whatever value we want to make a normalization).
Coming back to this equation:

1 h? Bo bt ) . L h? 2\t c* 1

E;gw(e Ve Tyvie®) +5 9w | o R+me? |ty —%(Rm, —9wR+ Agw,) =0
Putting it more symmetric (considering we are in one of the three cases of chapter 7):

1 K2 s foot a 1 (n? 5 t c* 1
Ezeu(e Vﬁtp YV,e )ev+§ ER+mc ey lpev—%(Rm,—EeﬂRev+euAgw,) =0

This equation, for sure can be factorized a la Dirac way somehow. But the quadratic equa-
tion solution has to be used, complicating the things. | will come back with this in next
revisions of the paper.

10 Influence of Ricci scalar in the energy of a particle

We have seen in 9.1 the following equation:

hZ
E,qrticte = mc? ——R
particle m
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But what is the influence of the second element? Let’s check the influence in a proton at
the surface of Earth

We know:

Myroton = 1.6726E — 27kg
h = 1.05457E —34] - s
¢ = 299792458m/s

To calculate the Ricci scalar R is more complicated. If we use the Schwarzschild metric
would be zero. What we can do is to calculate the Kretschmann scalar [70] considering
Schwarzschild metric in the surface of Earth (related to the Ricci scalar curvature) and take
its square root (its dimensions are L™ and the Ricci scalar is L2. As commented, this is just
a reference:

11Nm?

G = 6,6743E —

g
Mearen = 5,9722E24 kg
T = Toqren = 6,371E6m

VKretschmann scalar =

48G2M? |48 - (6,6743E — 11)2(5,9722E24)2
c*r6 2997924584(6371E3)6

= 1.18821E — 22m™2

Coming back here, now considering a proton:

2
E,articte = mc? ——R
particle m

(1.05457E — 34)?
— _ . 2 _ .
= 1.6726E — 27 - 299792458 Te726E =27 1.18821E

— 22 =1.503257E — 10— 7.9E — 64

We can see that the second element is several orders of magnitude lower than the original
energy. Even if we consider R=1 (an example), we would be in a similar situation:

E me? — "R = 16726 — 27 2997924582 — LOSASTE = 347
particle = ME =5 10 = 2 1.6726E — 27
= 1.503257F — 10 — 6.651F — 42
We can see that the second element is neglectable in general. And only in very big gravi-
tational fields (with R very high), the second element could start having an effect.

11. Conclusions

In this paper we have used Geometric Algebra to be able to embed the Klein-Gordon equa-
tion for a particle in a non-Euclidean field (gravitational field) getting the following equa-

tion:
m h?
ePV(V, (Y TP)e®) = 72 <m02 - ER> Yy

Where Ty is the wavefunction collapsed (multiplied by its reverse), this way:
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1p+1l’ = (¢°eo + 1!)161 + 1!’232 + 1/)333 - 1/)4‘34 - 1,0565 - Ebﬁee - l/)7e7)(l/)030 + l/Jl"fl
+%e; +Ples + Pte, + Yies +Yles +pe;) = p+j

Being p and j the probability density and the fermionic current respectively.

The equation above can be factored to be simplified into:

m 5 h?
Vb = ﬁ<mc _ER> e,

Meaning that the energy of a particle is somehow decreased by a term that depends on the
Ricci scalar (the curvature of the space where it lies in)::
hZ
Eparticle =mc? — ER

Anyhow, this reduction is completely negligible in the general case being several orders of
magnitude below the normal energy.

Following other path, we found another equation:

112 5 NN S & oo ct 1
Eag”v (e Vﬁ(va(lﬂ l,b)e ))+Egm, §R+mc 'll) ¢—%<Rw—§gwR+Agw)=O

This equation (that are in fact 8 embedded equations) have 14 or 15 unknown variables: 8
coefficients of the wavefunction ° toy? and 6 metric elements g;; (i,j from 1 to 3) with a
possible added gg,.

The rest of the equations (8 equations more) come from the continuity equation:

e’lv,lT =0
With T defined as:

- 1 th 2\t 1h2 8 fr o
= 9" T =5 ~R+me* |y ¢+§E(€ Ve(Vo (¥ T)e ))
So, the equation is in fact, solvable.

Bilbao, 8" December 2023 (viXra-v1).
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A1l. Annex Al. Bra-Ket product in Euclidean metric

The bra-ket product of a reversed spinor (in orthogonal metrics is the same as reverse) can
be calculated as:

iy = yref e, = (Yool + el +p2el + el +ef + el +ylel + el )Wle, +Ple, + e,
+le; + e, +Pies +Ptes +p7e) = PP =
= (e + YPley +Ple, + ey — Yle, — Pies —Ples —e,) (e + YPley + e, + e + Yte,
+ies +Pes +P7e;) =
= W +Ple; +Ple, +Pie; — Prese; — Piese; —Poere, —PTeree) (WO +Ple + Yle, + Yie;
+Ptese; +1Piese; +ptese, +P7ejee;) =
WO + Y yPle; + YOPPe, + YOYde; + P Pteses + P Uese +pOYceie, + YOPTe e e; +
YrPOe, + ()2 +iYPece, — PliPiese, +hlYte e e; — ltes + P e, + Pl ezes +
Y2Poe, — pPYlese, + (Y2)? + PPle e + pPYtes +PPPeere; — PPPte; + PP ese; +
Y3POey + 3Plese; — PiPlese; + (P2 — PiPte, +PPPte, +P3Pteiees +PiYPese,
—Phple,e; —hrihle e e + PrhPe; —PrPie, + (W) +Ytpdeie, — Prplese; +ptypTe, —
—P°POeze; — pPPles — Pie e es + PIPie; — YiPrese, + (W) + YiYte e; + YOYTe, —
—peCeie, + PoPle, — hoe, — PoiPiee s + POPtese — Yo ezes + (PO + YSPTes —
7 POe e e; — Pl ees — WP eze; — Y PRere, + P e + YT Pte, + Y0y + (Y7)?

Please, take into account that for simplification | have considered directly e, = 1. Ifin the

end, it has another value, it has just to be considered in the operations.

Continuing with the operation. If we separate from the result above only the scalars, we
have:

@0+ @H*+ @ + @) + @*)* + @) + @*)* + @7)?
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We will call this sum p (probability density):
p=@%2+ @O+ @D+ @+ @D+ @)+ @O+ @)?
If we separate the components that multiply by e; we get:
PO+ PP — PP + P3Pt + YT + PP — oYt + YTyt
= 2" — Y2 + PPy +yYtyYT)
In e, we get:
wOwZ + wllIJG + leIJO _ l/J31l)4 _ l/J41l)3 + 1p51p7 + l/)6l/J1 + l/J7lp5
= 2% + 1Y — PPt + YY)

In e we get:

1l)Olp3 _ 1!)11,05 + w2¢4 + l,b31l)0 + l,b41l)2 _ 1p51,b1 + l/)6l,[17 + ¢7¢6
= 2°%° — PYS + PPt + YY)
In eyes:
2= ¢01p4- + ¢11p7 + lpz.‘l}3 _ l/)3.‘l}2 _ 1)[}41/)0 + 1)[}51/)6 _ lpélI}S _ lp7ll}1 =0
In ege;:
YOS — P13 + PPy, + P3P — Y — PSP + oYt — YT = 0
In e e,:
12 ¢01p6 + ¢1lp2 _ lpz.‘l}l + l/)3.‘l}7 + l/)4-.‘l}5 _ 1,[151/’4 _ ll}6'(l)0 _ ll)7ll}3 =0
In e eyes:
12 lzoll)7 + lpllptl- + wzlps + 1p3l)06 _ lp4lp1 _ lpSwZ _ 1,[161/)3 _ l/)71,[10 =0
If we call vector J (fermionic current) the sumin e;, e, and ez, we get:
J =200 — 2 + Y3 + p*PT)e; + 2% + Pyl — PPyt + Y T)e,
+ 2% — M5 + PPt + PeiPT)e;
So, in total we have:
Y=y P=p+] (291)
With:
| p =%+ @H*+ @)*+ @)+ @H* + @) + @®)* + @)?
And:
J =200 — 2y + P33 +p*PT)e; + 2% + Pyl — PPyt + iy T)e,
+ 2% — P S + PPP* + PCiPT)e;
Anyhow, in general we can always say that whatever the final result is, the product will
have the following shape:

Php = jhe,

Where j# are just scalar coefficients (or functions that output a scalar) and the e, are the
basis vectors as they have been defined throughout the paper.

A2. Annex A2. Bra-Ket product in non-Euclidean metric (Orthogo-
nal but not orthonormal)

We apply the following relations, when performing the multiplication:

(90)2 = ||6‘o||2 = Joo
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(91)2 = ||e1||2 =J11
(e, 2 = ||9z||2 =022
(93)2 = ||93||2 = 033

€o0€; = €€
€63 = —e€3€;
6361 == _6163
€16; = —€66

For simplification we will consider directly e, = 1. If in the end, it has another value, it
just will have to be considered in the operations.

Yy = prefipre, = (Yool +ylef +pel +yiel + el + el +ydel +y7el)Wle, + Yle; + e,
+ipie; + e, +Pes + Yl +1P7e;) =
W° +Ple; +PPe, + Pie; + Plese, +PSee; + Plesey + P ezee ) (O + hle; +PPe, + Ple; + Pleye; +Poese; + Yleie, + Pleje,e;) =
YO POpTey e + PTles + YO eses + PO ese + Y YCere, + P eseses +
Y'ye; + 1;’)12”‘31”2 +plpiee, — Prpiese, + PiYteees — P PCllesllPes + Y yCllelPe, + Y lleslPees +
YrPoe, —YPPiPlese, + l’-’ZZ“ez”Z +prPiese; + Rt le;llPes + YPpoe e e; — wzlpﬁwxyelez% + 93y llesll%ese;
—P*Ple,e; — Pripleseses + PripPlleslles — YrypillesliFe, + lp"Z“ez'Ileez“Z +p*YllesllPere, — pHypcllexllPeses + 7 llesll?llesllPe, —
—p5Peze; — P llesllPe; — PoPereze; + PiPRllesll’e; — Yotlles e e, "’¢52”93“2“91“Z + 3 YCllelese; + 5y lleslPlle e, —
—PoYPOese, + PoYtilellPe, —poY?lle,llPe, — PoPiee e; + PO llellPeses — YoPille,l|Pezes + lp62”91”2”92“2 +oy7lleqlPlle,ll?e; —
—Pp7Peieze; — YT lleslPeres — YYllesllPese; — WTPC lleslPese, + YT e P llesliPer + WTYC llesllleslPe, + Y7 lles I llezllPes
+ 97 lleslPllez P lles 2
If we separate from the result above only the scalars, we have:
p =D+ @011 + )92z + @)% Gss + W) G22035 + W9)?g33911 + )? 911922 + (W)? 911922933

We will call above sum p (probability density).

Now, if we separate by e; :

POt + Y0 — P2 YClle ]l + PiYolles|I? + Y Y llealPllesll? + oyl llesll — oy le,|I?
+P7Y e | ]les]I?

20" — PP P0lleall* + 3yt llesll” + 7 lle, I lles]|®)
YOP! + PP — PP gy, + YIS gas + PP gra s + PP sz — WO Gsy + VY G205
2Pt — PO gy, + PPPPgas + Y7 g52933)

By e, :
FPOU? + P pSllel® + P2p° — PiPtilesl® — w3 llesll* + w37 lleslI*lleqI* + wouptlles I
+ 75 leg |17 lles|I?
2(+9°P% + Pryslledll® — Y3llesll* + 597 llesl*llesII*)
FPOY? + P O gyy + P20 — PPt gss — WY1 gss + PSP gz 911 + YOP i + Y5 g110ss
2+ + P pogyy — Y PP gas + W Y7 ga3g11)
By e; :

+POP° — P rpSlles|I? +Pytlle; 12 + 9 Y0 + Y ylles I — Yoy tlledll® + Yoy lles |l el
+P7YClelPlle,|I?

2(+9°P% — Pr3lledll® + p2pllesll* + oy llesl llezll®)
+POP3 — P S gys + PPt o + PP+ PP g — PSP g1y + YUY G112 + YT YOG11 922

2+ — Y3 gyy + P*Prga, + Y7 911952)
In e,e; plane:

YO+ P17 les |1 + pP® — P =Y+ SPliledll? — oSllesl — 7Y lell? = 0

In e;e; plane:
+POPS —Pp® + P2 el + YRt — pySllesll? — Y0 + Yotlle ]l — p7Rle Il = 0

In eje, plane:
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PP+ Pip? — PRt + sl + ySllesll? — ptllesl — Yoy — p7Rles |l = 0
In eje,e; plane:

YO PP+ PP PP — YT — PP — YOS — P70 = 0
So, in this case, we can sum up the result as:

Yy =p+j
Being:

p =%+ WH2%911 + W3)?go + W*)2g33 + @)% 922933 + ¥°)? 933911 + WO)*G11922
+ (W¥7)? 911922933

J= 2@t — p*POgyn + WPPPgss + Y7 gang33)es
+ 2(+p Y% + P 1POgi — v P3gsz + Y gszgi1)e;
+2(+Y°P3 —PMPP gy + PPt gay + YO g11g22)es

Anyhow, in general we can always say that whatever the final result is, the product will
have the following shape:

Pl = jhe,

Where j# are just scalar coefficients (or functions that output a scalar) and the e, are the
basis vectors as they have been defined throughout the paper.

A3. Annex A3. Bra-Ket product between the reverse of a spinor
and a spinor in non-Euclidean metric (Non orthogonal and non or-
thonormal). Deberia llevar una capa forrada de armifo

We should do the following operation again:

Py =yrelpe, = (Yoel +plef +p2el +ylel +yrel + yiel + el +y7el) W6 + Yle, + Y,
+1pde; + hte, +Pies + Poes +p7e;) =
W +le; +PPe, +les + Ptese, +Pteses + ez + P ese e ) (YO +Ples + Y%, + ey +htese; + Yoese; +P0eie, +eee;) =

But using the following rules commented in chapter 3.3.

(e)” =ee; = lle;ll* = gy
eiej = Zg’-J - ejei = Zgﬂ - ejei
€€ =6€i¢ =Jgij = Yji
eiej =ei~ej+eiAej=gU+eiAej

(31)2 =66 = ”31”2 =911
(32)2 = €6, = ”92”2 =022
(e3)* = eze3 = |lesl|* = gs3

e18; = 2915 — €361 = 20y — €z€q
€03 = 20,3 — €3€; = 2g3; — €3€;
esey = 2gs1 —e1e3 = 2¢g,3 — €163

I am not going to do it, but anyhow, you can understand that the result, whatever it is, will
have this form:

Py = jhe,

Where j# are just scalar coefficients (or functions that output a scalar) and the e, are the
basis vectors as they have been defined throughout the paper.
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A4. Annex A4. Bra-Ket product between the inverse of a spinor and
a spinor in non-Euclidean metric (Orthogonal but not orthonor-
mal).

If instead of multiplying by the reverse, we multiply by the inverse (in orthogonal but not
orthonormal metric), we should use the following rules from previous chapters:

(e0)? = lleoll* = goo
(e1)? = lleylI> = g3

(e2)? = llezll* = g2
(e3)? = llesll* = gs3

€€ = €;€g
€63 = —€36,
€361 = —€41€3
€16, = —€z6;
(e) t=¢el= S &
L
i llell?
ejei _ eje,-

O

el led 9319

Where all the above relation we have seen in previous chapters.
Operating:

V= (0 o Y

lp4
IIe I I

€36 €1€3 €261 €366 )

+° +y° +y7
lezll*lles llesli*lle, ]I [EARIEATS lleslI*llez11*lles]I*

II63IIZ

@ +Ple + e, + Ples + Preses + Pese; +YPlese, +Yeseze;)

€ €1€62€3

0y)2 0
W 9 o U o s~ e Y e Y e~ Y e e Pl

€263
lleI*lleslI*

Yoyt 12 e _ 6 1
PO+ W e U e — W e e U Y e *

€
UOPes U e + WO — Y o U e — Y e — W o

+
lle. 17 lles 1l llesll* lle, 1>

€ €2 ey e e, e,
0. 39 — 1 39 + 2.1,3 e. +( 3)2 4.1,3 5./,3 — 6./,3
VW Y o U e+ ) U R e U e VY

+pOte,es + Pt w4 e ”z ees +PPPtes — PiPte, + (Y1) — 'w e ”z e, +PoPte;—0r ||e ”2 + 7Pt ||e ”2

e e, e, e,
FYPOPSege; — PlPies + hPpSe; e +SPSes + PhpSe T+ (5)? — POYS ey +PTPO T+
llell e 1l Tez1l eIl

U ey + s —YPYer + Y eses [ — W e H U e WO N

Tesl?
PP ereres + P P eses + W eser + Y eres + 9 Y s+ ey 1 es + (W)

The scalar part is the same as the one multiplying by the reverse in a Euclidean orthonormal
metric:

p=@W"*+ WD+ WD+ @3>+ WD+ @) + @) + (Y7)?

This could be a hint, that probably this is the real operation that has to be done in general,
instead of the reverse. The issue is that in orthonormal metric, the inverse and the reverse
are the same operation. But this is not true in general, in non-orthonormal metrics.
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If continuing with the operation, for example, we separate by e; we can see that the result
is not as compact and in orthonormal or orthogonal solutions.

€1 €1 2% €1
PO ey — PO S b Tt Y, — Ye, + e
[[EA [[EA lleall lleall

Even we can see that the result in the planes is not zero. Example e,es:

€263
[I2lleslI?

ee; es e, e, es

400 Tt 32 2q/)3 0% 69))5 5406 17

-ty -7y P}ple; =+ PP e + POPtee; — POt o e + PP te, s + i ege
Ilez1I>lleslI? Ilez “llesl? llezll> ™ o lle,II? ™ “llesll? i

Or e;e,e; , also different from zero:

€1€2€3

I%llezlI?lles 1%

—ah710
LAY

€263 €3 2% €2 21 €2
Yhple —PSyPleje, —— —POYS ey + PPt =05 + PUPSe e
1”62”2”963“2 2 les |2 llesll? llezll? ™ lle, I 727 Hlell2™

3
+3Pee, _“E B +P°Y7e e,e;
3

Anyhow, in general we can always say that whatever the final result is, the product will
have the following shape:

Y = jue,u

Where j# are just scalar coefficients (or functions that output a scalar) and the e, are the
basis vectors as they have been defined throughout the paper.

In case that we perform this operation (multiplying by the inverse) in an orthonormal met-
ric, we will get the same result as in Annex Al (as the inverse is the same as the reverse in
this case).

In case, that we perform this operation in a non-orthogonal (and therefore non-orthogonal
case), we will have to follow the rules in chapter 3.3.

Anyhow, the result will always have this form:

1/)_11,0 = j“eu
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