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Abstract 

Almost all phenomena and structures in nature exhibit some degrees of fractionality or fractality. 

Fractional calculus and fractal theory are two interrelated concepts. In this article we study the 

memory effects in nature and particularly in biological structures. Based on this fact that natural 

way to incorporate memory effects in the modeling of various phenomena and dealing with 

complexities is using of fractional calculus, in this article we present different examples in various 

branch of science from cosmology to biology and we investigate this idea that are we able to 

describe all of such these phenomena using the well-known and powerful tool of fractional 

calculus. In particular we focus on fractional calculus approach as an effective tool for better 

understanding of physics of living systems and organism and especially physics of cancer. 
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1. Introduction 

The concept of memory effect plays an important role in a large number of phenomena in different 

contexts and systems from biological structures to cosmological phenomena. For instance: 

memory effects in nanoscale systems [1, 2], optical memory effect [3], gravitational and 

cosmological memory effect (which means: the induction of a permanent change in the relative 

separation of the test particles when gravitational radiation passes through a configuration of test 

particles that make up a gravitational wave detector) [4], memory effects in gene regulatory 

networks [5], memory effects in economics [6] have been investigated. In addition other kinds of 

memory effect including: shape memory effect [7-10], magnetic shape memory effect [11] and 

temperature memory effect [12] have been also considered in recent years. 

In all above mentioned references authors have used the standard calculus, however nowadays it 

is well-known that a natural way to incorporate memory effects in the modeling of various 

phenomena is using of fractional calculus. On the other hand almost all phenomena and structures 

in nature exhibit some degrees and levels of fractionality or fractality (low or high level or 

something between them), also nowadays it is well-known that there is a close relation between 

fractality and fractionality. In this work we investigate this idea that are we able to describe all of 

such these phenomena using the well-know and powerful tool of fractional calculus. Therefore for 

this purpose in the following, concepts of fractality and fractional dynamics are briefly reviewed 

respectively in Sec. 2.Then in Sec. 3 we introduce fractional calculus as a powerful tool for 
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modeling of memory effects in different context and we present some important applications. At 

last, in Sec. 4, we will present some conclusions. 

 

 

2. Fractality and fractionality 

The concept of fractals have been introduced in the 1960s by Benoit B. Mandelbrot. The most 

important property of the fractals are arbitrary non-integer Hausdorff dimensions and the concept 

of fractality (i.e. being a fractal) can exhibits itself either in space or in time [13].  Fractals have 

many applications in various branches of science and engineering from biology, chemistry and 

physics to mechanical engineering and so on [14-17]. Nowadays, it is well known that there is a 

close connection between fractals and fractional dynamics and in fact fundamentally they are 

interrelated. Fractional dynamics is essentially related to the underlying fractal geometry of space-

time and is a powerful framework to study the behavior of nonlinear physical systems that are [18-

22]: out-of-equilibrium and described by differential and integral operators of arbitrary non-integer 

orders. During the recent years, the number of applications of fractional dynamics in science, 

engineering and particularly in physics has been continuously growing and include models of 

fractional relaxation and oscillation phenomena, anomalous transport and wave propagation in 

different complex media from fluid to plasma and so on [23-29].  

 

2-1. Fractality 

A fractal is an object that has a non-integer dimension [13-15]. Fractals show self-similar 

structures. Such structures are introduced by using the concept of a reference structure and 

repeating itself over many scales. In general, the fractals structures are defined by an iterative 

process instead of an explicit mathematical formula [20]. As a simple example consider a closed 

(filled) unit equilateral triangle. Connect the mid-points of the three sides and remove the resulting 

inner triangle of size 0.5 . By repeatedly removing equilateral triangles from the initial equilateral 

triangle, at the n th stage we will have an object consists of 3n
 self-similar pieces (subsets) with 

magnification factor 2n . This is a well-known fractal that is called Sierpinski triangle or Sierpinski 

gasket. The fractal dimension of this fractal object is defined by  

log( ) log3
1.585

log( ) log 2
  

N
D

M
 

where N  is the number of self-similar pieces (subsets) and M  is the magnification factor. This 

number is a measure of irregularity and complexity of the fractal structure. Another simple case is 

the Cantor set which is a limiting set of points which results from discarding the middle third of 

each line segment in going from generation to generation, and starting from a line segment of unit 

length. The fractal dimension in the case of the Cantor set is 

ln 2
0.631

ln 3
D   . 

From classical mechanics to field theory and high energy physics fractality has many important 

applications [19-23]. For example fractal topology accounts naturally for breaking of discrete 

space-time symmetries and also it is able to account, at least in principle, for anomalous gauge 

charges, anomalous magnetic moment of massive leptons and enhanced cross-sections[21-23]. 

In recent years fractal geometry analysis has attracted attention of biologist as a useful and 

desirable tool to characterize the configuration and structure of biological structures. The 

considered issues include: fractal geometry analysis of configuration, structure and diffusion of 

(1) 

(2) 



proteins [24-29], fractal analysis of the DNA sequence, walks and aggregation [30-34] and fractal 

model of light scattering in biological tissue and cells [35]. 

 

2-2. Fractional dynamics 
Fractional dynamics is a field in theoretical and mathematical physics, studying the behavior of 

objects and systems that are described by using integrations and differentiation of fractional orders, 

i.e., by methods of fractional calculus. Derivatives and integrals of non-integer orders are used to 

describe objects that can be characterized by: (1) a power-law non-locality (2) a power-law long-

term memory (3) a fractal-type property [19]. As an example in the realm of classical physics we 

can consider the well-known diffusion phenomena. The most known diffusion processes is the 

normal diffusion. This process is characterized by a linear increase of the mean squared distance: 
2( ) r t t  

where r  is the distance a particle has traveled in time t  from its starting point. However there are 

many examples of phenomena in the natural sciences that violate this kind of behavior i.e. they are 

slower or faster than normal diffusion. In these cases (anomalous diffusions) the mean squared 

displacement is no longer linear in time: 
2( ) ,     0 2  r t t   

In recent years it is well known that generalization of the well-known diffusion equation and wave 

equation such that it includes derivatives of non-integer order with respect to time can describes 

phenomena that satisfy such a power law mean squared displacement. The fractional diffusion-

wave equation[19] is the linear fractional differential equation obtained from the classical diffusion 

or wave equations by replacing the first- or second-order time derivatives by a fractional derivative 

(in the Caputo sense)[41-43] of order   with0 2  , 
2

0( , ) ( , )C

tu t x C D u t x

   

This equation describes diffusion-wave phenomena [36, 37] which is also called the anomalous 

diffusion such that we have the super-diffusion for1 2  , and sub-diffusion for 0 1  . In 

above equations the fractional derivative of order   , 1n n   ,is defined in the Caputo n N  

sense: 

1

0

0

( ) 1 ( )
( ) ( )

( )

t n
c n

t n

f t f
D f t t d

t n


 




 

 

  
  

     

Where  denotes the Gamma function. For n  , n N  the Caputo fractional derivative is 

defined as the standard derivative of order n .  To derive a solution for a process described by an 

equation containing Caputo fractional derivatives, we need the initial conditions that can be written 

as: 
( ) (0)    ,  0,1,..., ( 1)  k

kf c k n  

and because of this point that we are seeking the causal solution for natural phenomena we require 

that ( ) 0f t  for  0t . 

As we see fractional dynamics and fractality are deeply tied to each other. In the following section 

we investigate the fractional calculus that is a major method in the consideration of fractional 

dynamical systems.  

 

3. Fractional calculus in bioscience and biomedicine 

(6) 
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As a physicist we always are able to model natural phenomena using systems of differential 

equations and nowadays it is well know that the advantage of fractional-order differential equation 

systems over ordinary differential equation systems is that they are more comprehensive and also 

incorporate memory effect in the model [38-44]. The kernel function of fractional derivative is 

called memory function [45]. Recently it is showed that the fractional model perfectly fits the test 

data of memory phenomena in different disciplines [46] they have found that a possible physical 

meaning of the fractional order is an index of memory. From this viewpoint fractional calculus has 

found many applications in new research on physics of biological structures and living organisms, 

from DNA dynamics [47-49] to protein folding [50], cancer cells [51], tumor-immune system [52], 

modeling of some human autoimmune diseases such as psoriasis [53], bioimpedance [54], spiking 

neurons [55], and also the transport of drugs across biological materials and human skin [56] and 

electrical impedance applied to human skin [57] and even modeling of HIV dynamics [58]. 

 

3-1. Fractional dynamics of cancer cells  

Recently fractional order cancer model has been presented in Ref. [51]. In this work, they have 

studied the fractional-order model with two immune effectors interacting with the cancer cells. 

Without any doubt the behavior of most biological systems has memory and also some degrees 

and levels of complexity. As we mention in above sections the modeling of such these systems by 

fractional ordinary differential equations has more advantages than classical integer-order 

modeling, in which such effects are neglected. Studying immune system cancer interactions is an 

important topic (see [51 and references therein]). In Ref. [51] a new model for immune system has 

been proposed. In this model the authors have used two immune effectors and also they have 

considered cross reactivity of the immune system. The model with some modifications is as 

follows: 
( 1)

0 1 1 2 2    c

tD T aT rTE r TE   

2
( 1) 1

0 1 1 1 2

1

    


c

t

T E
D E d E

T k

   

2
( 1) 2

0 2 2 2 2

2

    


c

t

T E
D E d E

T k

   

where ( )T T t is the tumor cells, 1 1( )E E t , 2 2 ( )E E t  are the immune effectors, and a ; 1r ; 2r

; 1d ; 2d ; 1k ; 2k  are positive constants and   is the order of fractional derivative 0 1   and 

  is an arbitrary quantity with dimension of [second] to ensure that all quantities have correct 

dimensions. The interaction terms in the second and third equations of model (8-10) satisfy the 

cross reactivity property of the immune system. The equilibrium points of the system (8-10) are: 

0 1 1 1 1 1 2 2 2 2 2(0,0,0);  ( / (1 d ), / ,0);  ( / (1 d ),0, / )    E E d k a r E d k a r  

To avoid the non-biological interior solution where both immune effectors coexist, we assume 

that: 

   1 1 1 2 2 2/ (1 d ) / (1 d )  d k d k  

The first equilibrium 0E  is the nave, the second 1E  is the memory and the third 2E  is endemic 

according to the value of the tumor size. Stability analysis shows that the nave state is unstable. 

However, the memory state is locally asymptotically stable if: 1 2 1d d , and d 1   while the 

endemic state is locally asymptotically stable if: 2 1 2d d , and d 1  . Finally, based on the model 

(8) 

(11) 

(9) 

(12) 

(10) 



described here the authors in Ref. [51] have showed that fractional order dynamical systems are 

more suitable to model the tumor-immune system interactions than their integer order counterpart. 

With this motivation in the next section we apply fractional calculus for the other area of new field 

of physics of cancer that is branching processes and cancer cells growth. 

 

3-2. Cancer Growth  

In this section we propose our new model for branching processes which are a class of simple 

models that have been used extensively to model growth dynamics of stem cells and cancer cells. 

Branching processes represent the most widely used approach to model population dynamics of 

cancer cells that can be defined in discrete or continuous time and with evolution rules that may 

or may not depend on time (for details see [60] and references therein). In this work we propose a 

new model for continuous time branching processes. 

The natural generalization of the discrete time model for cells is the birth-and-death model where 

each cell has a probability ( )t dt of dying in the time interval ( , )t t dt and a probability ( )t dt

of dividing into two cells in the same time interval. Here the rates of cell death and division have 

been written as time dependent, but for simplicity we can assume they are constant. 

The birth-and-death process can be used to compute the evolution of the size distribution of cancer 

cell colonies ( , )p s t , defined as the probability that a single cancer cell gives rise to a colony 

composed by s  cells at time t , where time is measured in days. The probability density function 

( , )p s t evolves according to the following master equation: 

( , )
( 1) ( 1, ) ( 1) ( 1, ) ( )s ( , )       

dp s t
s p s t s p s t p s t

dt
     

starting with an initial condition 
,1( ,0)  sp s  . From Eq. (13), we can obtain an equation for the 

average colony size s : 

( ) 
d s

s
dt

   

yielding an exponential growth: 

 ( ) exp ( ) s t t   

However branching processes is completely a complex biological phenomena and generally 

experimental dada deviates from the results of standard models and calculations so here we 

generalize Eq. (14) to the following fractional form: 

( 1) ( 1)

0

( )
  ( )   c

t

d s t
D s s

dt



  

 
     

The solution of this equation can be written as: 
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is one-parameter Mittag-Leffler function. For example for the case 
1

2
   we have: 
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where erfc  denotes the complimentary error function and the error function is defined as 

2

0

2
( ) ,

z

terf z e dt


    ( ) 1 ( ),erfc z erf z      z C  

For large values of z ,the complimentary error function can be approximated as 

21
( ) exp( ) erfc z z

z
 

At asymptotically large times, and using Eq. (19) we have 
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In many cases in nature and in particular in biological systems we may have low level of 

fractionality which mathematically means that the order of the fractional derivative   is close to 

a positive integer, namely,  n   with small positive   [59], then we will have: 
(n)

0 1( ) ( ) ( ) ...   c n n

tD f t f t D f t   

where 
1 ( )nD f t  is: 

( ) ( ) ( 1)

1

0

( ) (0) ln( ) ( ) ( ) ln( )   
t

n n n nD f t f t f t f t d     

where  t and 0.5552156... is the Euler constant. 

In the case of low-level fractionality (i.e. the order of fractional derivative is 1   ) for our new 

model we will have: 
1

0 ( )  c

tD s s     

(1)1 1

0 1( ) ...   c

tD s s t D s     

and the complete solution can be expressed by: 

0 1
( ) ( ) ( ) ...  s t s t s t  

where 

 
0

( ) exp ( ) s t t   

and for the correction term we have: 

 11
11 0
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After Taking the Laplace transform of Eq. (29) we will have: 

(25) 

(26) 

(27) 
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where (t)Ei is the exponential integral defined by [61]: 

exp( )
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t

y
Ei dy

y
 

And has the following asymptotic form [61]: 
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Therefore the complete solution can be expressed by: 
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For small values of t  we obtain: 

 ( ) ( ) ln 1     s t t t t     

And for the asymptotic solution when t  we have: 

( )
( )


s t

t

  
 

4. Conclusion 

Fractals are measurable metric sets with a non-integer Hausdorff dimension. The main property of 

the fractal is non-integer Hausdorff dimension that should be observed on all scales. There is a 

close connection between fractals and fractional dynamics. Fractional dynamics is a field in 

physics and mechanics, studying the behavior of objects and systems that are described by using 

the fractional calculus. Fractals and fractional calculus generate parameters of arbitrary dimensions 

as well as arbitrary order of integration and differentiation. Therefore it is reasonable that we 

expect that behavior of the fractal objects and systems can be described by the fractional calculus 

approach. Almost all phenomena and structures in nature exhibit some degrees and levels of 

fractionality or fractality (low or high level or something between them) therefore it is reasonable 

to apply fractional calculus for them. As a scientist we always are able to model natural phenomena 

using systems of differential equations and nowadays it is well know that the advantage of 

fractional-order differential equation systems over ordinary differential equation systems is that 

they are more comprehensive and also incorporate memory effects in the models. In this work we 

have discussed about the fractional dynamics of cancer cells. We have proposed new model for 

the average colony size. We derived the average colony size in different conditions. We hope that 

these results and our future studies on the physics of biological structures and living systems help 

to better understanding of complexities that occur in such systems and organisms. 
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