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Abstract 
Understanding biological complexity is one of the most important scientific challenges nowadays. 
Protein folding is a complex process involving many interactions between the molecules. Fractional 
calculus is an effective modeling tool for complex systems and processes. In this work we have 
proposed a new fractional field theoretical approach to protein folding. We have derived two coupled 
fractional partial differential equations that their solutions with specific boundary conditions and 
different values of the order of fractional derivative would describe and predict the possible contour 
of conformational changes for protein folding. 
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1. Introduction 
Protein folding is a complex process involving many different interactions between the molecules 
that has attracted many attentions from physicist, chemists and biologists in recent years. Protein 
folding is the process by which proteins achieve rapidly and spontaneously their highly structured 
conformation with a certain biological function in a self‐assemble manner, while misfolding process 
of protein can be seen as the failure to attain this fully functional conformation that may causes many 
different diseases such as: bone fragility, Alzheimer's disease, Parkinson disease and so on [1, 2]. 
There are many different approaches to address this issue such as: statistical mechanics and polymer 
dynamics etc. [3-7]. In the last decades, fractional calculus have found extensive applications in 
various fields of science from physics to biology, chemistry, engineering, economy and even in 
modeling of some human autoimmune diseases such as psoriasis[8-26]. Today fractional calculus is 
well known as an important effective modeling tool for complex systems and processes and can be 
used for describing various complex phenomena such as viscoelasticity, dielectric relaxations, fluid 
transport in fractal networks and so on [27-29]. 
The fractional variational principle can be considered as an important part of fractional calculus. 
Recently Agrawal has written a review article on this subject that can be found in [30] and discussed 
about various features of fractional variational calculus. Applications of fractional variational 
calculus have gained considerable popularity in science and engineering and many important results 
were obtained [31-39]. In our recent work we have propose the fractional sine-Gordon Lagrangian 
density, then using the fractional Euler-Lagrange equations, we have obtained fractional sine-Gordon 
equation [40]. Generalizing our previous results and using the approach present in [41, 42], we will 
propose a new fractional field theoretical approach to protein folding. 
In the following, we will briefly review our mathematical tools. Then in Sec. 3 we briefly describe the 
protein structure and then we discus about its folding process also its importance in physics, 
chemistry and medicine. In the next section, i.e.  Sec. 4 we present a new fractional protein Lagrangian 
density. Then using the fractional Euler-Lagrange equations we obtain its related equation of motion. 
Finally, in Sec. 5, we will present some conclusions. 
 
 

                                                 
*Correspondence: Hosein Nasrolahpour, Tarbiat Modares University, Tehran, Iran. 

 E-Mail: hnasrolahpour@gmail.com 



 
2. Mathematical Tools 
The fractional derivative has different definitions such as: Grünwald–Letnikov, Riemann-Liouville, 
Weyl, Riesz, Hadamard and Caputo fractional derivative [43], however in the papers cited above, the 
problems have been formulated mostly in terms of two types of fractional derivatives, namely 
Riemann-Liouville (RL) and Caputo. Among mathematicians, RL fractional derivatives have been 
popular largely because they are amenable to many mathematical manipulations. However, the RL 
derivative of a constant is not zero, and in many applications it requires fractional initial conditions 
which are generally not specified. Many believe that fractional initial conditions are not physical. In 
contrast, Caputo derivative of a constant is zero, and a fractional differential equation defined in 
terms of Caputo derivatives require standard boundary conditions. For these reasons, Caputo 
fractional derivatives have been popular among engineers and scientists. In this section we briefly 
present some fundamental definitions. The left and the right partial Riemann–Liouville and Caputo 
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The Right (Backward) RL fractional derivative  
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The Left (Forward) Caputo fractional derivative  
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The Right (Backward) Caputo fractional derivative  
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The fractional variational principle represents an important part of fractional calculus and has found 
many applications in physics. As it is mentioned in [30] there are several versions of fractional 
variational principles and fractional Euler-Lagrange equations due to the fact that we have several 
definitions for the fractional derivatives. In this work we use new approach presented in [35, 40] 
where authors developed the action principle for field systems described in terms of fractional 
derivatives, by use of a functional ( )S  as: 

    ( ) ( ), ( ), ( ), ( )C C

k k k k k k kS L x x x x dx         

where     ( ), ( ), ( ),C C

k k k k k kL x x x x      is a Lagrangian density function. Accordingly, kx  

represents n  variables 1x  to nx , 1( ) ( ,..., )k nx x x  ,    1, , , , ,..., , ,C C C

k nL L  

            , 

1( ) ...k ndx dx dx and the integration is taken over the entire domain . From these definitions, we 

can obtain the fractional Euler-Lagrange equation as: 
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Above equation is the Euler–Lagrange equation for the fractional field system and for , 1   , gives 

the usual Euler–Lagrange equations for classical fields. 
 
 
 
3. Physics of protein folding  
Proteins are a particular type of biological molecule that can be found in every single living being and 
have diverse biological functions. In chemical point of view, proteins are polymers of amino acids. 

All amino acids are made up of a central  -carbon with four groups attached to it: an amino group 
(-NH2), a carboxyl group (-COOH), a hydrogen atom and a fourth arbitrary group or side chain (-R) 
(see Figure 1) [44-50]. 

 
Figure 1: General structure of amino acids. 

Though there are infinite different proteins that exist in nature, however they are all made up of 

different combinations of 20 naturally occurring amino acids. Proteins are in fact large molecules 

that may consist of a large number of amino acids (see Figure 2).  
 

 
Figure 2: Chemical structure of protein chain: As we see amino acids react to form proteins. 

Proteins have different levels of structure are known as primary (the primary structure of a protein 
refers to its linear sequence of specific amino acids in the polypeptide chain.), secondary(the 
secondary structure of a protein refers to the three-dimensional structure of local segments of a 
protein that form within a polypeptide due to interactions between atoms of the backbone.), tertiary 
(the tertiary structure points to the overall three-dimensional shape of an entire protein molecule), 
and quaternary (the quaternary structure points to the arrangement of more than one protein 
molecule in a multi-subunit complex) structure[44-50]. 
Proteins participate in almost every essential task of life of every living organisms and systems, and 
because of this, a complete understanding of their dynamics and processes are very important for 
the development of modern biosciences, biotechnology and biomedicine. In the realm of medicine, 
nowadays we know that the lack or malfunction of specific proteins or abnormal proteins 
aggregation can result in many types of diseases for instance: different kinds of cancers and many 
neurodegenerative disorders, including Huntington, Alzheimer, or motor neuron diseases. Apart 
from medicine, in the realm of technology there are new materials of extraordinary mechanical 
properties which benefit from the proteins’ characteristics. Also, some attempts are being made to 
apply these new kind of biomaterials in living organic tissues. Hence, they can play an important role 
in new science and technologies such as: nanoengines, nanomachines and so on. After knowing the 
structure of protein and its importance in the future of science and technology, the most important 
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question is that: how do proteins fold? After several decades researches have been continued for the 
general principles and rules by which proteins achieve their final three-dimensional structure and 
how we can predict them. Most proteins accomplish their function only under a very specific native 
shape which consist of many twists, loops and bends of the linear chain of amino acids. This spatial 
structure can be determined, nowadays, using two experimental techniques that is Nuclear Magnetic 
Resonance (NMR) and X-ray crystallography for small proteins and for proteins of any size 
respectively [see [44] and references therein]. 
However, theoretically and in a physical point of view protein folding can be considered as a complex 
nonlinear phenomenon. Generally spatiotemporal dynamics of complex nonlinear systems can be 
described using three class of important nonlinear and integrable partial differential equations 
differential equations which have different kind of traveling solitary waves’ solutions (known as 
solitons which are included kinks and breathers) as follow [41]: 
I- Sine–Gordon equations  
II- Korteweg–deVries equations   
III- Nonlinear Schrödinger equations. 
In complex physical systems, Sine–Gordon solitons, kinks and breathers appear in various 
circumstances, including propagation of magnetic flux in long Josephson junctions, nonlinear spin 
waves in superfluids, also in living cellular structures, both intra–cellular (e.g. DNA and protein 
folding) and inter–cellular (e.g. neural impulses and muscular contractions). For example the idea 
that it is possible that soliton excitations may suggest a discovery of a new mechanism in the 
duplication of DNA and the transcription of messenger ribonucleic acid (mRNA) has been proposed 
recently, also it has been known that nonlinear excitations can influence conformational dynamics of 
biopolymers, by the way several models have been proposed to explain protein transitions [see [41, 
42] and references therein].  
In this paper, we propose new model for protein folding process based on the Sine–Gordon equation 
and Klein–Gordon equation in the framework of fractional field theory. The idea is that that protein 
folding as a complex phenomenon may be mediated via interaction of the protein chain with Sine–
Gordon solitons which propagate along the chain within the framework of fractional dynamics. 
 
4. Fractional Protein Lagrangian Density 
Fractional dynamics is a field in theoretical and mathematical physics, studying the behavior of 
objects and systems that are described by using integrations and differentiation of fractional orders, 
i.e., by methods of fractional calculus [29]. Derivatives and integrals of non-integer orders are used 
to describe the behavior of nonlinear physical objects and systems that can be characterized by [29]: 
(I) special kind of non-locality 
(II) memory effects 
(III) fractal-type properties. 
As an example in the realm of classical physics we can consider the well-known diffusion phenomena. 
The most known diffusion processes is the normal diffusion. This process is characterized by a linear 
increase of the mean squared distance: 

2( ) r t t  

where r  is the distance a particle has traveled in time t  from its starting point. However there are 
many examples of phenomena in the natural sciences that violate this kind of behavior i.e. they are 
slower or faster than normal diffusion. In these cases (anomalous diffusions) the mean squared 
displacement is no longer linear in time: 
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In recent years it is well known that generalization of the well-known diffusion equation and wave 
equation such that it includes derivatives of non-integer order with respect to time can describes 
phenomena that satisfy such a power law mean squared displacement. 
Also it is well known that many biological systems are objects and systems with memory. As a result, 
the concept of fractional dynamics and in fact adopting fractional calculus can play an important role 
in the study of dynamical biological systems by taking advantage of the long memory properties of 
the fractional operators. In addition the advantage of modeling bio structures using fractional 
derivatives is the non-local property, and such these non-localities and memory effects in biological 
objects and systems mean that the next state of the system relies not only upon its present state but 
also upon all of its historical states [14]. 
Motivatetd by the above mentioned reasons in this section we present our new fractional Lagrangian 
model of protein folding that is in fact a fractional generalized version of the model presented 
recently in [41]. Using fractional Lagrangian model we will be able to consider complex nature of 
protein folding due to its memory effects and non-local nature. Following the model presented in [41, 
42] we propose the protein Lagrangian including three terms: 

I- Nonlinear unfolding 4 −protein at the initial state: 

     
4

†1
( ) ( ) 1 cos

2
 

  
      

    

C C

I

m
L x x

m


 

    

 


  


 

II- Nonlinear sources injected into the backbone, modeled by 4 self-interaction: 
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III- The interaction term (with the coupling constant ): 
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Therefore the total potential (from all three terms) is: 
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Assuming that  is small enough to be approximately at the same order with   , the first term can 

be expanded in term of  , giving (up to the second order accuracy): 
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from which the total fractional Lagrangian:   tot I II IIIL L L L can be (up to the second order 

accuracy) approximated by: 
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From the fractional Euler–Lagrangian equations for the total Lagrangian Eq. (6) we have: 
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the following coupled and perturbed  fractional Sine–Gordon equation and (nonlinear) fractional 
Klein–Gordon equation with cubic forcing in (1+1) dimension are derived: 
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Solving these two coupled fractional partial differential equations with specific boundary conditions 
and different values of the order of fractional derivative would describe and predict the contour of 
conformational changes for protein folding. 
 
 
5. Conclusion 
Fractional calculus is very useful tool for describing the behavior of nonlinear physical systems which 
are characterized by: power-law non-locality, power-law long-term memory and also fractal (or 
multifractal) properties. There exist many biological objects and systems with memory and nonlocal 
effects. In particular protein and its folding process has attracted many attentions from physicist, 
chemists and biologists in recent years.  There are many different approaches addressing complex 
phenomena such as protein folding/misfolding however we believe that such these phenomena can 
be comprehensively understood by using fractional calculus and all of previous studies and models 
are only special cases of the model presented in this work. In this work we have proposed a new 
fractional field theoretical approach to protein folding. We have derived two coupled fractional 
partial differential equations (i.e. fractional Sine–Gordon equation and fractional Klein–Gordon 
equation) that their solutions with specific boundary conditions and different values of the order of 
fractional derivative would describe and predict the possible contour of conformational changes for 
protein folding. 
We believe that our new approach can give us new insights in understanding and modeling of 
nonlinear complex phenomena in various living cellular structures. We hope to present our other 
result in future showing important role of fractional calculus in describing complex phenomena 
related to bio structures such as protein, DNA and RNA.  
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