An Algebrologist in Wonderland

Robert G. Wallace

Abstract. By imposing a requirement for spatial isotropy, it is possible to find
an algebra with a subalgebra structure having a pattern matching that of the

bosons and three families of fermions of the standard model.

1.

1.1.
1.2.
2.

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.
2.9.

2.10.
2.11.
2.12.
2.13.
2.14.
2.15.
2.16.

3.

Contents

Introduction
Acknowledgements
Notation
Subloop structure and the standard model
Isotropic alignment
Phase
Spin
Fermions and bosons
Color
Temporal alignment, three generations of each fermion family
Quark and lepton families
Gluons
Electroweak bosons and the Brout-Englert-Higgs mechanism
Higgs particle
Fermions and the Dirac equation
Signature, matter and antimatter imbalance
Measurement and Quantum ambiguity
Dark matter and dark energy
Gauging the symmetries
Comparison with unification approaches
Conclusion

Appendix A. Cayley tables for T and M,(C)

Appendix B. The Brout-Englert-Higgs mechanism

Appendix C. Clifford algebras and Cayley-Dickson-type algebras
References

© © 00O O Ctot Ototw i



2 Robert G. Wallace

1. Introduction

This paper documents a pattern found for the subloops of a loop (quasi-group)
labeled Uy, which is the embedded loop for an algebra, labelled U, obtained as
the product of the trigintaduonion algebra with that of 4 x 4 complex matrices .
U is the same size as Cl;9(R), the Clifford algebra which can represent
multivectors for the dimensionality used in string theories. Its subalgebra
structure is explored by considering isomorphisms of the subloops of its
embedded loop, Uy, = T, ® M, where Ty, is a loop embedded in T and My, is a
loop embedded in the algebra of 4 X 4 complex matrices, isomorphic to the
complexified space-time Clifford algebra. The structure has features that
correspond to those of the standard model.

As reported in a previous paper[l], Ty, has an asymmetrical sub-loop structure,
for which correspondences with the standard model can be identified. The
correspondences distinguish between fermions and bosons, between left and right
handed particles, between leptons and quarks, account for three families of
fermions and identify SU(3) symmetry for color and broken symmetry for flavor.
This paper modifies and extends that analysis.

The analysis presented is based on symmetry structures found by inspection of
isomorphisms between subloops of 77, when subjected to a requirement for
isotropy when aligned with the the unit elements for a complexified space-time
Clifford algebra multivector.

1.1. Acknowledgements

Having made extensive use of the Loops package[2] for GAP4[3], T give thanks to
the creators of the programs. I thank members of the physics community who have
been responsive or helpful in the past, those who post informative articles on the
internet.



1.2. Notation

1.2.1. My, the loop of unit elements for M,(C), isomorphic to Cl4(C). Unit
elements for the complexified space-time Clifford algebra Cl4(C) have been
labeled as shown in table 1. They can be represented using the 4 x 4 matrices
labeled as shown in table 2 together with their imaginary counterparts. For this
labeling scheme, unit elements related by spatial rotation are labeled using sets
of three sequential letters. Their Cayley table is set out in Appendix A.
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TABLE 1. Notation for unit elements of Cly(C) and M,(C)

Signature| Blade |[Scalar Spatial Pseudo| Space/time | Spatial | Spatial |Time| Space/time
bivectors scalar bivectors [trivector| vectors |vector trivectors
Real €o €yz, €2z, Exy Cryzt €xt, €yt, €2t €ryz €x,€y, €2 €t €yzt; €zaty Cxyt
(+++-)| Ci(3,1) S L.M,N \ D.,EF U XY, Z T P,Q.R
(+---)| Ci(1,3) S L.M,N A% D,EF iU iX,iY,iZ iT iPiQ,iR
Imaginary| ie, |iey:,9€.0,1€0y| 1Cuyzt [1€0t, 1€Y1, 1624 1€ry. |i€g, 1€y, 1€ 1€¢ |1€yap,1€001, 1€yt
(+++-)| Ci(3,1) iS iL,iMLiIN iv iD,iE,iF iU iX,iY,iZ iT iP,iQ,iR
(+---)] CI(1,3) iS iL,iM,iIN iV iD,IE,iF U XY, Z T P,Q.R

TABLE 2. 4 X 4 unit matrices representing real elements of My,

0 0 1 0
0 0 0 1
1 0 0 O
0 1 0 0
0 1 0 O
1 0 0 O
0 0 0 1
0 0 1 O
0 0 0 1
0 0 1 0
0 1 0 O
1 0 0 O
0 1 0
1 0 O
0 0 0
0 0 -1
0 0 0
0 0 -1
0 1 0
1 0 O

OO O

OO O R OO0

o= OO

or oo ©o0or

0 0 0
1 00
0 1 0
0 0 1
0 0 0 ]
1 0 0
0 -1 0
0 0 -1 |
0 0 0 ]
-1 0 0
0 1 0
0 0 -1 |
0 1 0
0 0 -1
0 0 0
-1 0 0
0 0 0
-1 0 o0
0 -1 0
0 0 1
0 -1 0
0 0 1
0 0 0
-1 0 o0

00 —1 0
00 0 -1
M=11 9 0 o
Lo 1 0 o0 |

[0 -1 0 0 ]

1 0 0 0
=10 0 o 21
Lo 0o 1 o0 |

0 0 0 —1

0 0 1 0
N=10o -1 0 o
1 0 0 O

0 -1 0 0

1 0 0 0
L=19 0o o 1
0 0 -1 0

0 0 0 1

0 0 -1 0
@=l0o -1 0 o
1 0 0 0

[S,L,M,N] and [S,T,U, V] can be used to represent unit elements for right and
left isoclinic quaternion algebras as used by Van Elfrinkhof[4].
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1.2.2. T}, the loop of unit elements of T. For T}, labels have been assigned so that,
for global subscript changes, ¢ <+ j <> K, subloop isomorphisms are maintained.
Labels such as 0,,,, are used for subscripted sets of 4 elements for the same letter.

TABLE 3. Notation for 17, the loop of unit elements of T

€0 €1 €2 €3 €4 €5 €6 €7 €8 €9 €10 €11 €12 €13 €14 €15
To g, (] O Ao A /\] A Ho o Hy Hr Vo v, vy Vi

€16 | €17 | €18 | €19 | €20 | €21 | €22 | €23 | €24 | €25 | €26 | €27 | €28 | €29 | €30 | €31
Qo Q, Qy Oy Bo B, 6; Br Yo Ve Vs Vs do d, 6‘7

He| || H| H

>,
x

1.2.3. Sedenionic subloops of 7T7,. Cawagas[5] labelled the isomorphism types for
the 31 subloops of Ty, of order 32 as Sy, Sa, Sg, Sr. In this paper these have
been labelled using uppercase greek letters with subscripts: I'g, Ag..6, Bo..6, 20..15-
Elements of T, for positive elements of these loops are shown in table 4.

TABLE 4. Positive elements for sedenionic subloops of T7,

[ [ Toololoylowl[ AT AN [N [Tat0 Lt Loty L[ vo [ v [y [vic [ vo [ [y [ [ Bo [ 8.1 B, [ B[ 0 [ [ [ [ 80 [ 8 [ 8, [ 9]
LG [mmmmmmww| [ [ [ [ [ [ [ [ [T T[] [weeeeumum
I

3 [] []
AL (L] L] (I [] []
5 A ||m| |W| |[[m] |m| |[[w] [m] [[m| [m | | H| |(E|| [m| [m] [m| [m]
6] As||m (I [ B ] (I H|| m|m [ ] [ B ] HE| |
AERIEL L] [ ] [ B [ B ] [ B [ I B (I
8|B,||m| [m| |m| |m H| (m| (W] (m] (m| |m|| (m| m|m| [m| |[|[m] |[m| |
9[B;[|m m | mm [ ] [ B ] HE [m C L] []
10[A;[m[m EEEm [ ] [ L] [ B B
11[A; |m| |m m| (mm| |m | |(m|| (m] [m|m| |m m| (m|m| [m| |
2[4 | H| (mm| |m H| (mjm LI [] mm| |m []
B[B,[WH L] LN L LI L]
4B, |[m| |[m H| (]| (W] [mm| |m H| (mm| [m| [m| [m | |H|
15/ Bs | W E| mm mm| |[m || (mm| |=m LI | (mjm| |
S e/ N N[N E/E[E]m L8V A O O A R B
PRI EEE E[E[E[R [N
IRRILILILIL LI LI LI
19/ [m|m|m|m E RN E|(mEmE|m H EE N
20[S, [ M| W [ L] (L] L] (L] L] LI
213 (M| [m| |[m| |m| |[m| |m| ||m| |m| [[m] |m| |[|m] [m| [|m| |m| |m| [m| |
22| % |[m LI LI LI LB LI LI LI []
23], (W W LI LI LI LI LI L]
24| (M| W[ [m| |m H| (| (W] [m|m| (| [m| [m N (m]| [E] [m]
25 %y || (I H| (mm R [m (I H| (mm HE |
26][S0|[W [ W [ I B [ I B [ I B HE|
PRI E| (mm| |m E| (m|m| |m E| (mjm| |m LIIL]
28T, M H| (mE| |[|m H| (mmE| |[|m | (mm| |[m H| (mm| |
29[T;[mm [ ] [ I L] [ B ] [ ] [ B I B
IR E| (m| (m| mjm| [m| ||m| |m | |(m|| (m| (m|m| |[m| |
BN H|| (mm | E = [ I ] H| (mm | E |m []

1.2.4. Octonionic subloops. There are 155 subloops of 77, of order 16, 50 true
octonionic loops labelled Oy, and 105 quasi-octonionic loops labelled Oy,.

1.2.5. Notation for products. The product of T with M,(C)generates:
U=T® M4(C) 2T Cly(C) with loop of unit elements Uy, = T, ® M|,
® is used to denote multiplication based on the Cayley table for T.
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2. Subloop structure and the standard model

An algebraic basis for the standard model must account for all features of the
standard model. The subloop structure of T7, when isotropically aligned with the
complexified Clifford algebra multivector for space-time may do this.

2.1. Isotropic alignment

The structure of the standard model is invariant with respect to spatial
orientation. The Cayley tables for T and Cl4(C) (tables for positive elements of
Ty, and M) can be aligned so that, if the signs of products are ignored, they are
identical. For some such alignments, 77, can be rotated with respect to the
elements aligned with the M, elements assigned to Space-Time Algebra (STA)
unit spatial vectors without changing the pattern of isomorphisms for 77,
subloops, making these alignments isotropic.

The isotropy of an alignment can be assessed by considering participation of
elements of 77, and My in their subloops. There are only seven sets of
quaternionic unit elements of 77, elements that can be isotropically aligned with
the quaternionic set of spatial bivectors [ey,€,q€qy]:

[0,0,04], [0.X,A:); [0,A ], [0 AN, (0,06, [05060], [0kAoAk]

Examples of isotropic alignments are shown in table 5.

TABLE 5. Participation by unit elements of T, and My, in their
subloops of order 16

Gapd D[ s [LIM[N] v [D]E[F] U [x]Y]z]T] P [ Q[ R [is[iL[iM[iN] iv [iD[ie[ir ] v [ix[iv]iz]it] ip [ iq | iR

1610 1s]3]3 ]3] 3 [a]s]3]] 3 [s]s]s]s] s3] afs|as]s]s]] 3 [ala][s]]s][s]s]s]s]s]3]s
1611 [[45]6]6 6] 6 [15]15[15]] 6 [15]15]15] 6] 15 ] 15] 15 151515 15 |6]6]6]15]6]6|6fis]6]6]6
1612 ||15(6|(6 (6| 6 |{1|1|1| 6 |1|1|1}|6| 1 |1 |1 o1 1|1 1 |6|6|6]|] 1 |6/6|6]|1] 6|6 |6
16 13 80(20({20{20|| 20 |16{16]16|| 20 |16|16|16([20| 16 | 16 | 16 ||20| 16 | 16 | 16 16 [20(20(20] 16 {20{20]20{/16| 20 | 20 | 20
B | o leyelezeleryerysdeaende

x| ey | || et | eyt | Cxnt | Cayt |[iColieysliCariCoy|[i€rystlicatlieyiics| [ieryslicalieyie:|liediey iesptficsy

CI(1,3) | €0 leyz|ezales

at |Cxyt
[

Ve

O
11
24

Cayt 2|1z

1 per 0yl| 00 |00y 0w || Mo | AN [ Aa]] B0 [t |1ty ||| Vo] v | vy | Wk ||| @ | @y ||| Bo

3 per gyl 0o |00 [Ny [As|| Ao |A|0y|0k|| o | b |V [Vi||Vo| Ve | 1ty | b ||| @ | By | B || Bo

3 per aul| 0o |00 [ Ao | Ad|] 07 |0k | A Ak Ho |1 Vo | Vi |llty] x| V) | Vi ||o] | Bo | B || @y
Or, 50 (1414 (14| 14 |14(14|14|| 14 |10|10{10|/10{ 10 | 10 | 10 ||35| 7 | 7 | 7 7
6L 105/21|21 (21| 21 [21]|21|21]| 21 |25|25|25|(25| 25 | 25 | 25 || 0| 28|28 | 28| 28

2.2. Phase

The unit imaginary for My, ieg, commutes with all elements of Uy, so can be
associated with phase for excitations associated with its subloops.

2.3. Spin

For isotropic alignments, «, has to be aligned with ieg. As ieq is assigned to
phase, this suggests assigning a, to an extension of phase. ieg commutes with all
elements of Uy, whereas «, anti-commutes with imaginary elements of 7. This
suggests that excitations associated with subloops can be classified as spin 0, 1/2
or 1 if they include both, one or none of ey and oy respectively.
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2.4. Fermions and bosons

For subloops of T}, of order 32 (refer to table 4), 16 exclude, and 15 include, .
For isotropic alignments, «, must be aligned with the unit imaginary for Cly(C).
Subloops of order 32 that exclude «, can be aligned with unit elements for the
STA multivector. Subloops of order 32 that include o, cannot be aligned with unit
elements for the STA multivector, but can be aligned with a complexified three
dimensional manifold corresponding to the light-cone. The former are identified as
being fermionic, and the latter as being bosonic. The 3y subloop is a special case,
being fermionic, but also isomorphic to all the bosonic subloops. Any subloop of
order 32 that includes «, is a true sedenion subloop, and any subloop of order 16
that includes «, is a true octonion subloop.

2.5. Color

The sets of elements aligned with spatial bivectors for isotropic alignments
correspond to automorphisms for the octonion with unit elements [JOL]KAOL]K]. If
one unit imaginary is fixed, its automorphism group is SU(3) Associating the
fixed unit imaginary with the Space Time Algebra (STA) pseudoscalar, this
identifies color as being generated by relations between orientations of the
octonion with respect to spatial bivectors and space-time bivectors.

2.6. Temporal alignment, three generations of each fermion family

The spatial bivectors for the STA, [ey.€.r€5y], generated as the products of
[ezeye.] are also obtained as the products of [eyieyie,:] and of [ezyieyzi€sqi]. In
table 5, depending on signature the matrix 7" or T is assigned to e;.

For the assignment of [LM N] to spatial bivectors, isomorphisms are unchanged
if Vor U for(+++-) or ¢V or iU for (- - - 4+) are used. For the alignment of
[0,0,0,] with spatial bivectors, (but not for a mixed [oA] alignment), any of
[Aottolo] OF [VoBoy] may be chosen to be aligned with e;. [0k Aorsr)s [Touynlbons],
[Oouynloiy] are true octonionic subloops, whereas [0oukVouss], [TouyrBousl,
[TouyYouyws] are quasi-octonionic.

This suggests that realignments for T corresponding to different choices of the unit
element aligned with e;, such as \, <> u, ¢ J, are associated with three flavors
for fermions. In the rest frame of a particle, a difference in flavor associated with
realignment of T with respect to the STA can be regarded as a realignment of
space-time with respect to the particle. As the increase in observed mass for a
particle moving with respect to an observer can be regarded as a rotation of the
temporal dimension into a spatial dimension, this suggests that a similar effect
generates differences in mass for different flavors.
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2.7. Quark and lepton families

For octonionic subloops of order 16, such as [0,xAoyk], re-orientations with
respect to spatial bivectors and space-time bivectors include ones between
colored and uncolored subloops of order 16, suggesting that lepto-quark
transformations would occur. However, once the subloops are extended to order
32, these transformations are suppressed.

The subloops of order 32 identified as fermionic have four isomorphism types.
Ap, By, I'g and X are uncolored, so can be identified with components for lepton
families. A1, ¢ and Bj, g are colored and can be identified with components for
quark families. The number of components is twice that of the associated
particles. The components can be assigned to ones which interact with W=+
bosons and those that do not. Identification of correspondence with the
Brout-Englert-Higgs mechanism[6][7] results in assignment of By, A;. 3 and
B, . ¢ to fermionic components that do not interact with W= bosons. As
electrons are more like quarks than neutrinos are, Ay and By are assigned to
electron families. I’y and Y, are assigned to neutrino families, but because it is
isomorphic to Xj 15, the g subloop is used in the Brout-Englert-Higgs
mechanism, suppressing the existence of a sterile neutrino family.

2.8. Gluons

Colored bosonic subloops, 4. 15 are assigned to gluon components. Any two of
either [24, 25, 26], [27, 28, Zg}, [210, 211, 212] or [213, 214, 215] share a true
octonionic subloop which includes «a,. The interaction of the unshared colored
cosets for such a combination with colored fermionic subloops [A;. ¢Bi.. ¢] with
the coset colors leaves its elements subscripted o unchanged, whilst transforming
those subscripted ¢, j or x by interchanges: ¢ <+ j or J <> kK or K <> ¢.

For example, for a gluon associated with £35 F 34, elements subscripted ¢ would
be switched to those subscripted 7 and vice versa, leaving those subscripted o
and k unchanged, so for B; <> Bs:

(000 Ao ALy 1 V) Vi 0 BBk Y0V 000, ] < (000, Aoy sV Vit 0 BLBr VoY, 000,)]

Gluons are assembled as su(3) color and anti-color combinations for components
assigned to two subloops from the same set of three - [X4, X5, X¢], [X7, Xs, X9,
[Z10, X11, X12] or [Yi13, 214, X15]. This suggests that the subloop’s shared
octonionic subloop acts as a common octonionic component with respect which
to its coset components, one from each loop, undergo sinusoidal
oscillation.undergo sinusoidal oscillation.

If components from different sets of three that share the same color are combined,
unshared cosets complement each other to form a colorless combination, similar to
that for combinations of X1 3, so their interactions are electroweak. If components
from different sets of three that do not share the same color are combined, the
static loop of shared elements is not colorless, so do not assemble gluons.
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2.9. Electroweak bosons and the Brout-Englert-Higgs mechanism

If the subloops of Tj displayed isotropy for alignments of [A,uov,] with
permutations of [e,,€,q€4,], the electroweak symmetry group would be SU(3),
but that is not the case. Examining table 5, if only elements subscripted o are
considered, for subloops of order 16 there is a symmetry between \,8, and p,7,.
If only elements subscripted ¢jx are considered, for subloops of order 16 there is
a symmetry between p, ;.Y and v,,.0,,.. Any combination of scalar elements
subscripted o is color neutral, as is a balanced combination of elements
subscripted ¢jx. This suggests a basis for electroweak symmetry and the
Brout-Englert-Higgs mechanism[6][7]. The need to separate elements subscripted
o from elements subscripted tjx suggests a basis for the Weinberg angle. as a
re-orientation for p,7v, separately from p,,.7.,«. As for gluons, there is a static
true octonion subloop of shared elements [0, ;x Q0] With respect to which coset
components could undergo sinusoidal oscillation.

To match the way in which combinations of two subloops from [X4, X5, 3], [X7,
¥s, Yo, [Z10, 11, X12] or [Xi13, X14, Xi15] are used for gluons, consider
combinations of ¥, ¥ and X3, the bosonic subloops with matching orientation
with respect to [omwaoun]. This symmetry is broken by the asymmetrical
participation of elements in subloops of order 16 and 32. With reference to table
5, a partial symmetry of \,5, with u,v, (participation rates [14/7]) can be
extracted from the combination of ¥; and Y2, and a partial symmetry of 1,7,
with v,,.0,,. (participation rates [10/11]) can be extracted from the combination
of ¥5 and ¥3. The combination of ¥; and X3 does not offer a partial symmetry.
For the partial symmetries, and matching the way in which color/anticolor
gluons change quark color:

13 F X5 leaves [0k oyx] unchanged, whilst interchanging [AoyjxBoux] With
[Horyx Vo). This has no effect on A1 3, Bs. 5, ¥ and converts A; 3, By 5 to
Ap, By, 3 to A4, ¢ and vice-versa suggesting that it is to associated with W; and
Wy and W# bosons. The product of [NowsiBougie] With [fhosyeYousn] generates
[Vourdouyi)- This can be disposed of by interaction with the [vq,,:] component of
¥y factored by the o,a,i0,ic, complex doublet.

13, F X3 leaves [0p,xouyx] unchanged, whilst interchanging [fo,,xYoux] With
[VouyrOoyk]. This has no effect on By, A1._3,B1. 3, converts Ay to By, A4 ¢ to
By ¢ and vice-versa and converts I'g to 3o and vice versa, making it logical to
associate it with W3 and B and with photons and Z° bosons. The product of
[HoryYoryr) WIth [VousrOoue] generates [fiouwYous]. This can be disposed of by
interaction with the [,,,x] component of ¥y factored by the o,a,io,ic, complex
doublet.

Interactions with ¥y suppress the interaction I'g <+ ¥ at low energies.



An Algebrologist in Wonderland 9

2.10. Higgs particle

The Higgs field and particle are scalar, so will involve alignments of, for Tp;
[ToAolhoVoltofoYolo] With for My: [eperesryzeiaysi€oierieyy i€ipy,]. Assigning the
unit imaginary for Mj; and a, from 77 to phase, consider alignments of
[ToNottoVo] With for Mp: [egeiery.eiay-]. Assign [0€0] X [0oiyn®ouyx] to the Higgs
and [Ao€o] X [Torye@our], [Ho€0] X [Tory@oiyrls [Vo€0] X [Toiyn o] to Goldstone
bosons giving mass to the W= and Z°. The mexican hat potential for the Higgs
field could arise from properties of 4 x 4 matrices - refer to Appendix B.

2.11. Fermions and the Dirac equation

Ty, Ao, Bg, Yo subloops have been identified with color neutral fermion families
but with ¥ suppressed at low energies. A g, Bi..¢ have been identified with
colored fermion families. As bosons are assembled using combinations of two
bosonic subloops, this suggests assembling electron and quark families using
combinations of A subloops with B subloops, assigning the I' subloop to the
neutrino family, and the Xy to a sterile neutrino family that is not observed at
low energies.

TABLE 6. Ag, By orientations for three generations of the electron family

Cl4(C) Blades||Scalar Bivectors Pseudo Vectors Trivectors Chirality /mass
Unit elements|| e, €yz|Cox |Cay||Cat|Cyt|C2t|| Cayzt ||€x|Cy|Ez|Ct| Cyzt|Coat|Cayt|Cayz interaction
Dirac A%%5 oo |23 170 A+ apnd
Ao 0o || 0|0y |06 || BBy |Brll Bo ||0.]05|0k ol B | My | Hs | S0 Bo + Ao
0o |00y |0n||Bi|By|Br|| Bo ||t|py|t|do|| 6 | &) | O | o Bo + Ao
By o |00y 0| Bu|By|Bel]l Bo |[V|Vy|Ve|Yoll % | vy | Vx| Vo Bo + Ao
00 || 0.0y |06 || BBy Bl Bo ||Vl V| VslVoll Ve | V5 | Vs | Yo Bo + Ao
Ao 0o || ooy |on || |ty | 1s]] Ho ||Bi]Bs|Br|do]| 0 | 0y | Ok | Bo Ho + Yo
To || 000y 0w ||t [ By |ts]] o ||80|0)|0k|Boll Be | By | Br | do Fo %o
By o O |0y 1Ok || Ve | Vg |V Yo B ﬁ] Be|Vo|| W Yy | Vk Bo Yo + Ho
o |0 oo | 0]l Yo [Vl VelBoll B | By | Br | Vo Yo + Ko
Ao 0o || 00105 [00|[ 00 |6 |0n|| b0 ||t|py|t|Boll B | By | Br | Ko 0o+ Vo
o |00y 0k || 000 [0]| o ||Be|B|Brltoll b | 1y | e | Bo 0o + Vo
By To |||y |0n|[ V|V V]| Vo ||7|%|¥x|Bol| B | By | B | Yo Vo + 0o
0o 0|0y lon||v|vy|vall vo ||B|By|BrlVoll % | Y | Ve | Bo Vo + 0o

2.12. Signature, matter and antimatter imbalance

As shown in table 5, for M, there is a distinction between participation rates
for elements in subloops of order 16, which are isomorphic to four groups, GAP4
IDs: [16,10], [16,11], 16 12] and [16 13]. When identified with unit elements for
the Space Time Algebra (STA), going from (+ + +—) to (+ — ——) signature,
the signatures for vector and tri-vector blades are reversed. In combination with
distinctions between participation rates by elements of T}, in its subloops of order
16 this may account for the imbalance between matter and anti-matter observed
in the universe.
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2.13. Measurement and Quantum ambiguity

Quantum field theory calculations generate probabilities for future events.
Measurement collapses those probabilities into the observed event, with
parameters subject to the uncertainty principle. Interpretations for the process
between events differ. Interpretations based on an absence of reality between
events, or the generation of multiple realities for every event, or a discontinuous
collapse of a smeared all have their proponents. Super-determinism and
retro-causality allow for unambiguous reality between events, but introduce other
counter-intuitive features.

There have been many approaches to the use of non-associative algebras to
account for quantum ambiguity, as documented by Liebmann et al[9], and
elsewhere[10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29].

U =2 My(C) @ T includes, as sub-algebras, some of the non-associative algebras
considered. As non-associativity can generate indefinite results for calculations if
the order of multiplications varies, this suggests the postulate that events must
be consistent, to within the parameters of uncertainty, with end points of
trajectories (measurement points) based on perspectives for all other events that
constitute reality, but that, between points, different perspectives may cause
different observers to infer different trajectories.

2.14. Dark matter and dark energy

Dark matter composed of gluons has been proposed and was revisited by
Carenza et al[30][31]. In section 2.8, it is postulated that gluon combinations can
be assembled using color and anti-color combinations for components using two
subloops from the same set of three - [X4, X5, 3g], [X7, X5, 2], [Z10, X11, Z12]
or [X13, Y14, Z15)- The set [34, 35, 3g] differs from the other sets in that its
subloops are flavor neutral. This suggests the possibility that glueballs assembled
from gluon components from this set may be stable and not subject to
confinement, making them candidates for dark matter.

An apparent feature of dark energy is the non-conservation of energy. An approach
that might reconcile its properties with conservation of energy could be to identify
our universe as a three dimensional wavefront propagating in four dimensions in
accordance with Huygens principle, with a retarded wave propagating backwards
in time. If that wake takes energy backwards, it could balance the energy generated
forwards by the expansion of space-time. My(C) = Cly 1(R) = Cl2 3(R), so can be
used to represent the Clifford algebra of space-time for either signature, but the
signature of the added dimension would be space-like for one space-time signature
or time-like for the other. If one possibility is consistent with relativity[32], but
not the other, this would identify the signature of space-time, and could account
for the matter-antimatter asymmetry in the universe.
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2.15. Gauging the symmetries

The loops package for GAP4 reports automorphism groups of:

Ur : C2xC2x((((C2xC2xC2xC2):A6):(C2xC2))x((C2xC2xC2).PSL(3,2)))

Tr, : C2x C2x ((C2x C2x C2).PSL(3,2)

My ((C2xC2xC2xC2): A6) : (C2x C2)

With a spacetime subalgebra of My(C) assigned as a principal bundle, T ® C as
a fibre bundle, particle components as sections of the fibre bundle, the structure
found suggests that a subgroup of the automorphism group for Up would
correspond to the SU(3) x SU(2 x U(1) symmetry group of the standard model.

2.16. Comparison with unification approaches

The My(C) subalgebra of U can be used to represent space-time with an added
fifth spatial dimension, a feature of the original Kaluza-Klein model[33][34]. Five
real dimensions can be represented by My(C) which can then be complexified
using a imaginary unit elements from 77, suggesting similarities with SU(5)
unification[35]. My(C) can be complexified by quaternionic unit elements from
Ty, suggesting similarities with SU(4) x SU(2) x SU(2) unification[36].

The connection betweeen the trigintaduonions and the 31-sphere suggests a
connection with SO32 heterotic string theory. The assembly of fundamental
particles using pairs of sedenionic and quasi-sedenionic subloops of T, suggests
identification with the closed string of SO32 heterotic string theory[37] with a
static circle in a 31-sphere, and instead of identifying particles with excitations of
circle, identifying them as spherical harmonics with that circle remaining static.

U=Cl31(R) x C®H® O has similarities to the algebra R x C x H x O, used by
G. Dixon in his model[19][20].

3. Conclusion

The pattern of fundamental particles of the standard model displays a blend of
symmetry and asymmetry which is hard to replicate using direct association of
particles with sub-algebras of a Clifford algebra. A similarity between that and
the symmetry and asymmetry can be found in the subalgebra structure loop, 17,
embedded in T when a requirement for spatial isotropy is imposed by aligning it
with a Clifford algebra. This paper describes that similarity. Deeper analysis is
required to establish whether that similarity can be congruence. The algebrology
suggests that it might be, but congruence with established physics is extremely
constraining, so the similarity may be coincidental. As a non-physicist, I can only
wonder about the possibility, knowing that the chances of such a naive approach
being correct are low.
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Appendix A. Cayley tables for T and M,(C)

TABLE 7. Cayley table for T unit elements, T},

oo | o Loy Lo | Do LA A | N L tto | | ity Lt | o | v | vy | v | 00| @ | oy B 5, 0,10, | d
To|[+00| +0 |40 |+ X0 |+ A Ay [+ Nl o | 0 |11, [+ 1| +Vo | 1 [+ [0 0|+ |+ + 00|40, |+, | +0r
0, || 40| -00 [+04| -5 [FA] Ao | A [FN || o | -t |15 Vi [FV0|F0| -y || -0 | -0t +Yo +0,| 0o | -0k |6,
0y |40 -0 [ -0 |+ [ FX X o [ A0 [ty [t b0 | 110 | -V | Vi |+V0 | F1 | +ay[+a] -0 “Vr +0,|+0x| 00 | -0,
|||+, 00 | 00 [F X6 Ay [FA] Ao [Fhtn| -ty | F10] ~po | -V |41y | -0 | H06| 0| -a, [+, +7 +0x| -0, [+0.]-00
o[ o] -Au [y |-Ak | =00 [+ 0| +0y | F0w| Vo |40 | 1) |4V | -tho | pu | -1ty |~tr | +50| +58.|+5, -0, +Yo |+ |+ [+
AFALF oA [N 00 |00 | -0k |F0,| 10| Vo [+ -1y + 5, +0d, Yo [HYo| Yk [+
X [ FA [F A A A | -0, [Fou] 00 | -0 |41 | Vs | V0 [+10 -Bo +, -V [+ -7
Awl[FAR Ay [FA[HAo| -0 | -0, | +0| 00 |4V | +1| -V | Vo -B. -0 e | |+
o ||FHo| =t | =1y |t | Vo | -V | -V |-V | -00 | +0u |40, |40 +7 -, -Bo | -B. | -8y |-Bx
o || | po| =i |11 -0 Vo | Hv| -1y | 00 | <00 | -0k |+, +Y -0, +B8.-B0 |-Bx |[+5,

Vi || V| -0, [F0k| 00 | -0, Yo - +8,|+8x|-Bo | -5,
+uy| v |HVo| -0k | -0, | +0.|-00 Y +a, +Bs| -0, |[+5.] -Bo
=t | =ty [ | Ao [FA A A -0, -8, - | [ 4ay [ tag
AR Rl T R R -0 + 3] -y |- |-ay [ +ay
s [ 0| 1| -Ag [ Ak | -Ao [+ +J, +8x -0y [ -a, | -0
R S T R R R +4, -5, - | -y [t |-,
BBy [ B | -0 | v | -0 | -e +o, +t, +Vo| 1 |+, |0
+Bo|+Bx| By | =70 |70 +76| -1 -0y +1to) | Vo |-V [+
“Bi |+ Bo| B -1y | ¥ [ HY0 |+ -0, -l +u |+ Vo | -1
+B8,| =B |+Bo| v [+ -1 [+ +0, +iy +vi| vy [+ o
~a, |-y [0 | <0, | -6, | -0, | -0 +A -V Ry e e
ool tax| -y | -0, |+0,| -0x |+9, + A +V, | o |- pi |11y
-~ ||t | -0, |40+, -0, Ao + vy by b || -4t
+ay| -a, [+a,| -0, | -0, | +6,|+0o A Ao [H0u|+o,| -0 |-00 |-V | -1y e | =4y [ p | 1o
+0, |40, |40 [+ ovo| - | - |- i || HVo | H V| 1y |1k | -0, | -0u Ao [ A A A
<00 | -0x |40, |40 |[+aota, -, | -y |V Vo | Ve |1y |H0u |00 FA] A0 Ak [+
+0x| =00 | 00 |+ |- [+ao|+a, o ||+ |[H V| Vo | -1 |H0y|-0n A Ao | AL
-0, | 4+0.] =00 [Han]+ay| -, |+ay| “f | ~to |FVi| Vg |V Vo [FOk|t0y ] A AL A
+Yu |+ el +B6| -8 | -8, | =B Uy | Vi | o || 10, [ |20 | =N -0, |40, |40, |40
Yo | Ve [+ | +Be|+Bo| -8Bk | +5, Vi | V| e | o | = [t [ HAH Ao -0, |00 |-0x | +0,
k] Yo | =70 | +5y |+ Be|+Bo| -5 Fvo| v | -ty || ~po | =i [N A -0, |[+0x|-0, -0,
Y [+ Yo |+B8s| -8, | +8.]+8) VA Vo | -t | =1y [ 1| o [F k| -A) -0, | -0, |+0.]-0,

TABLE 8. Cayley table for My(C) unit elements, M,

Label| S | L |M | N |V | D | E | F | U |iX |iY |iZ |iT | iP |iQ | iR | @S |iL |iM |iN |V |iD |iE |iF |U | X |Y | Z | T | P |Q|R
+S | +L [+M|+N | +V [ +D | +E | +F |+iU |[+iX |+iY | +iZ | +iT | +iP|+iQ|+iR| +iS | +iL |+iM|+iN|+iV |+iD| +iE|+iF | +U |+ X | +Y |+ Z |+T | +P | +Q | +R
3 0 | HiX | iU | +iZ | =iV | =iP|+iT|—iR|+iQ| +iL | —iS |+iN|—iM|-iD|+iV|—iF | +iE| +X | -U | +Z
Y | +iZ | +iU | —iX| —iQ| +iR| +iT | —iP|+iM|—iN| —iS | +iL | +iFl | —iF
—iZ | =Y |[+iX | +iU | +iR| +iQ| —iP| —iT |+iN|+iM| —iL|—iS | —iF |—iE
+iT | —iP|+iQ|—iR| —iU |+iX|—iY | +iZ | +iV |=iD|+iE|—iF | —iS | +iL
+iE|4+iL | +iS
—iD|—iM|—-iN|
+iV | 4+iN |—iM|
U X | AY [ +Z | 4T | +P
| -X|+U | +Z|-Y |-P|+T
Y| +Z|-U|+X|+Q|-R
~Z|-Y|-X|-U|-R|-Q

Tl [+iX
X[ iU

+Q|+R
+R|-Q

+iQ|+iR|+iT |+iP|+iY |+iZ
iR|—iQ|+iP| =il |—iZ[+iY
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Appendix B. The Brout-Englert-Higgs mechanism
This appendix is part of a previous paper by this author[?].

The Brout-Englert-Higgs mechanism acts on a complex doublet and involves
scalar fields. For M4C ® T a scalar subalgebra can be assembled as the product:
[06S, 0615, @,S, piS] & [065, 0,1, 0oV, 0,U] @ [06S, AoS, 1S, V6S].

[06S,00T,0,V,0,U] ® [055, A5, 105, 1,5] is isomorphic to H® H and to My(R).
Its unit elements can be relabeled as matrices from table 1 as follows:

[065] 22 [S], [0oT,0,V,0,U] = [TVU], [AoS, 165, V6S] = [LM N]

AT, 10T, voT] =2 [PQR], AoV, 1oV, v, V] = [DEF), (AU, poU, v,U] = [ XY Z]

The Brout-Englert-Higgs mechanism is based on a scalar field with a mexican
hat potential. It is possible to find subalgebras of M4(R), and thus of
[06S,00,T,0,V,0,U] @ [055, XS, 1S, V6 S], with this property

Subalgebras of My(R) for which the scalar component (unit matrix [S]), is
associated with a mexican hat potential, can be found by considering unitary
abelian subgroups of M,(R). Unitary abelian subgroups of My(R) can be
represented by diagonal 4 x 4 matrices.

(e 0 0 0
0 €= 0 0
0 0 € 0
0 0 0 e

where 61 + 05 4+ 03 + 0, = 0, allowing it to be rewritten:

[e 0 0 0
0 ¢ 0 0
0 0 e O
0 0 0 1

The product of two elements of this type with parameters a,b,c and a’,¥’, ¢’ has
parameters a + a’, b+ V', ¢+ ¢’. A subgroup of the Heisenberg group H(5) shares
this property:

(1 a b c+ab

0 1 0 b
0 0 1 a
L0 0 0 1

This matrix has determinant = 1, and the commuting products of the form:

1 a+d b4+bd c+c+(a+ad)x(b+0d)
0o 1 0 b+ b

0 0 1 a+d

0 0 0 1
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This matrix can be written in terms of unit elements of My(R) as:
[S]4+a/2[V+Y]+b/2[M + F]+ (c+ab)/A[E+U + N + P].

There are other combinations of unit elements of M,(R) with similar properties.
These can be found using a 6 X 6 array having anti-commuting basis matrices
and the identity in each row/column:

S VT XY Z
Vv S U P Q R
T U S D E F
X P D S N M
Y Q E N S L
Z RF M L S

Interchanging rows and matching columns preserves group properties and
commutation relationships with respect to position in the array. For example,
rows and columns 1 and 2 can be interchanged to make the array:

IO TVI <
N~ >N n<
HEDWnNS S
E2ngxy
HrnZ2Em<RO
N E NN

Inspecting this array to assign unit matrices for an equivalent H5 subgroup
group, they would be:

[S] +a/2[V + Q] +b/2[M + F| + (c+ ab)/JA[E + N + T + X]|

This combination has the same properties. Interchanging rows and columns 1
and 2 has not changed the signatures of the matrices allocated to each position.

If a further interchange is made that does affect the signatures, e.g interchanging
rows and columns 1 and 4, to generate:

S Q U PV R
Q S E N Y L
U E S D T F
P ND S X M
VY EN S L
R L F M Z S

For the combination:

[S]+a/2[Y + Q] +b/2[M + F] + (c+ab) /AP + U + T + X|

The determinant is no longer 1. To make this combination generate a unitary
matrix, a factor has to be applied to [S]. That factor is /( £ 1 + 2(a/2)?),
provided that the factor is real and not imaginary.
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For the resulting matrix, there are four plus/minus permutations, for which the
possible components for [S] are :

[ /(1 +a?/2) 0 0 0
0 V({1 +a?/2) 0 0
0 0 V(1 +a?/2) 0
i 0 0 0 V(A +a?/2)
Which always has real entries, and determinant = 1 + a? + a*/4
[ /(—1-a?/2) 0 0 0
0 V(=1-a%/2) 0 0
0 0 V(=1-a%/2) 0
L 0 0 0 V(=1-a%/2)
Which never has real entries, and determinant = 1 + a? + a*/4
[ /(1 —a?/2) 0 0 0
0 V(1 —a?/2) 0 0
0 0 V(1 —a?/2) 0
L 0 0 0 V(1 —a?/2)
Which has real entries for a?/2 < 1, and determinant = 1 — a? + a*/4
[ /(—1+a2/2) 0 0 0
0 V(= 1+4a%/2) 0 0
0 0 V(=1+a2/2) 0
0 0 0 V(=14a%/2)

Which has real entries for a?/2 > 1, and determinant = 1 — a? + a*/4

The function fla) = 1 — a? + a*/4 has the form of a mexican hat potential.
For the assignment of unit elements of T ® Cl3; ® C to matrices:

[0'060} = [5]7 [aoehgoewyzta aoeacyz] = [TVU], [A0607/f’10607 VO€O] = [LMN]

[No€t, to€t, Voey] = [PQR],  [NoCayzt, foCayzt, VoCayzt] = [DEF],
[AOefIJyZ7 /’[/Oel"y27 Voea:yz] = I:XYZ}

The group represented by a plus/minus choice for:

V(£ 1+a%/2)[S] +a/2]Y + Q] +b/2[M + F] + (c+ab)/A[P + U + T + X]
is isomorphic to that for the same plus/minus choice for:

\/( +1+a?/2)[0,e0] + a/2[o€ryz + fo€t] + b/2[110€0 + VoCuyzt]

+ (c+ ab)/4[hoer + Toepys: + 0ot + Ao€ay:]

This features only scalar unit elements of U.
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Appendix C. Clifford algebras and Cayley-Dickson-type algebras

As reported in a previous paper [1], there are parallels between the left and right
quaternion subalgebras of M,(R) and particular octonionic subalgbras of T.

T is generated using the Cayley Dickson construction, with the product:
(a,b)(e,d) = (ac — db*,a*d + cb)

Its subalgebra structure has been analysed by Cawagas et al[?]. Cayley-Dickson
type algebras have also been analysed by J.W.Bales[38]. He arranges Cayley
tables for their unit elements as normalised latin squares with elements ordered
so that the bit-wise ‘exclusive or’ (XOR) of binary representations of two
element’s numbering generate the numbering of their product. He uses “twist
maps” to display the pattern of signs of products of unit elements. He designates
T as the “ws twisted Cayley-Dickson algebra for Ag”. Its twist map is:

C.0.1. An alternative construction of T. A Cayley Dickson-type construction:
(a,b)(c,d) = (ac — b*d,da* + be) is used by JW Bales to assemble the wy algebra
for As. It contains an embedded S? loop. It can be used to generate T from
elements g and h in S° using a procedure usually used to assemble Moufang
loops from groups. A new element u, not in S? is defined. Then let
T = S? U (SPu). Define the product in T as:

(g,9u) X (h,hu) = (g.h + gu.h + gu.h + gu.hu), where:

g-h = (gh)

(gu)h = (gh~")u

g(hu) = (hg)u

(gu)(hu) = h1g
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For its multiplication table arranged as a normalised latin square with elements
ordered so that bit-wise ‘exclusive or’ (XOR) of binary representations of two
element’s numbering generate the numbering of their product, the twist map is:

The embedded loop of order 64 for this algebra is isotopic to the embedded loop
Ty, for the standard representation of T. The isotopism is:

(2,25,21,19,26,45,39,12,22,43,14,31,32,8,20)(3,10,29,23,60,6,27,62,15,16,56,4,50,9,5)
(7,44,54,11,46,63,64,40,52,34,57,53,51,58,13) (18,41,37,35,42,61,55,28,38,59,30,47,48,24,36)

Applying the isotopism to M4 (C) is equivalent to: Hy, @ Hr @ C - Hr @ Hy, @ C
together with swapping the labels of some unit matrices with their negatives.

This indicates [0,,0,, 0] and [Ao, fto, Vo] generate the equivalent of left and right
handed quaterionic subalgebras of T.
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