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Abstract: Fermat's Last Theorem(FLT) states that there is no natural number set {a, b, ¢, n}
which satisfies a™ + b™ = c¢™ or a™ = c™ — b™ when n > 3. In this thesis, we related LHS
and RHS of a"™ = ¢"™ — b™ to the constant terms of two monic polymials x™ —a™ and x™ —
(c™ - b™). By doing so, we could inspect whether these two polynomials can be identical
when n > 3,i.e., x™ —a™ = x"™ — (c" — b™), which satisfies a™ = ¢" — b". By inspecting the
properties of two polynomials such as factoring, root structures and graphs, we found that
x™ —a™ and x™ — (c" — b™) can’t be identical when n > 3, except when trivial cases.

1. Introduction

FLT was inferred in 1637 by Pierre de Fermat, and was proved by Andrew John Wiles [1]

in 1995. But the proof is not easy even for mathematicians, requiring more simple proof.
Let a,b,c,n be natural numbers, otherwise specified. We related FLT to the following
two monic polynomials.

f(x) =x"—a". (1.1)

gx) =x"—(c"—-b"). (1.2)

If f(x) =g(x) is possible for n > 3, a™ = ¢™ — b" is satisfied, and FLT is false. But the
factoring, root structure and graph properties of f(x) and g(x) do not allow f(x) = g(x)
when n > 3. So, a™ = c¢™ — b" can’t be satisfied for n > 3.

2. Basic Lemmas
The number of roots of x™ — a” is as follows, as in Figure 1 [2][3][4].
@D Odd n = 3: One integer root and n — 1 pairwise complex conjugate roots.
(2 Even n > 4: Two integer roots and n — 2 pairwise complex conjugate roots.

Figure 1. Number of roots examples of x™ — 1™.
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(a) Roots of x5 —1" = 0. (b) Roots of x6—1" = 0.

Lemma 2.1. Below (2.1) is the irreducible factoring of (1.1) over the complex field [5].
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f() =x" —a" = [lg=a(x —ae ™). (2.1)
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Proof. The n roots of (1.1) are ae » ,1 < k < n, so, (2.1) is the irreducible factoring of (1.1)
over the complex field. [ ]

Lemma 2.2. Below (2.2) is the irreducible factoring of h(c,b) = c™ — b™ over the complex
field.
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h(c,b) = c" —b™ =[[}_,(c —be ) (2.2)
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Proof. The n roots of h(c,b) are c =be n ,1 <k <n, so, (2.2) is the irreducible factoring
of h(c,b) over the complex field. [
Lemma 2.3. All n factors of (2.2) can’t have same magnitude.
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Proof. The n factors of (2.2) are ¢ — be n,1 < k < n. Each factor can be considered as the
difference vector between (c,0) and b(cos %r,sin %’), as in Figure 2.

Figure 2. Vector factor examples of (2.2).
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(a) n=5 example. (b) n =6 example.
Because |c—be n | is same only with its complex conjugate |c—be » |, the
magnitude of all factors of (2.2) can’t be same for all k. [

Lemma 2.4. A polynomial whose roots are all factors in (2.2) is (2.3) below.

p(x) = [lk=1{x — (c - be¥)}. (2.3)
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Proof. The n factors of (2.2) are ¢ — be n ,1 < k < n, and they are all involved in (2.3) as
individual root. So, p(x) is a polynomial whose roots comprise all factors in (2.2). [

Lemma 2.5. A polynomial with different root magnitude can’t be of the form x™ —a",n > 3.

Proof. The n roots of x™ —a™ are all located on a circle of radius a in the complex plane.
But, if the magnitude of n roots is not all same, all roots can’t be located on a same circle.
So, a polynomial with different root magnitude can’t be of the form x™ —a™,n > 3. [

Lemma 2.5 implies that f(x) = g(x) can’tbe achievedfor n > 3,s0, a™ = ¢ — b™ can't
also be satisfied.



3. Graphical Interpretation of FLT and Proving Lemma

For graphical interpretation of FLT, example graphs of f(x) and p(x) are shown in
Figure 3.

f(x) =x™—a™. (1.1)
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p(x) = [Ig=1{x — (c — be'n)}. (2.3)
Figure 3. Example graphs of f(x) and p(x).

(a) Graphs for n = 1. (b) Graphs for n = 2.
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(c) Graphs for odd n = 3. (d) Graphs for even n = 4.

We get f(x) by vertically moving y = x™ by —a™. We get p(x) by horizontally moving
y = x" by ¢ and vertically moving by —(—b)".
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p(x) = [lg=1{(x —¢) = (=ben )} =

Z:l{X - (—bBZkTm)} = (31)

X"— (=" X=x—c.

In graph view, FLT is equivalent to the moving of p(x) to overlap f(x), to find possible
solutions that satisfy a™ = ¢ — b™. Moving p(x) is equivalent to varying the integer values
(b,c),b <a<c, ie. moving p(x) vertically or horizontally by integer steps. When any of
(b, c) makes two graphs overlap, a solution a™ = ¢™ — b™ is found, and FLT is false. To make
two graphs overlap, the following two steps are required.

@ Horizontal movement that makes X = x —c in (3.1)tobe X =x, i.e., ¢ =0.

@ Vertical movement that makes constant terms a™ and c¢™ — b™ equal.

In Figure 3 (a), when n =1, p(x) always overlaps f(x) for a = c — b. In Figure 3 (b),
when n =2, p(x) overlaps f(x) for Pythagorean triples, a® = c¢? — b? = (c — b)(c + b).

When n = 1,2, all roots of f(x) and p(x) affect the (x,y)-intercepts of the graphs, and
there are infinitely many solutions.



But, when n > 3, the advent of complex roots, which do not appear in graphs, makes
situations quite different from those of when n = 1, 2. Figure 3 (c) and (d) show that when
p(x) overlaps f(x), a=c—b or a? =c?— b? should be satisfied, which contradicts to
a™ = c" — b™,n = 3. This is because the complex roots can’t affect the (x,y)-intercepts of the
graphs. So, any integer step movements of p(x) can’t satisfy p(x) = f(x) when n > 3.

When n >3, moving p(x) to overlap f(x) is equivalent to making all n roots in
2kxi 2k

k=1(c —be n) same as those in []}—, ae = . Hence Lemma 3.1.
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Lemma 3.1. When n > 3, to make every n rootsin [[;-,(c —be n ) exactly match to those
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in [[r=;ae =, ¢ =0,a = —b must be satisfied.

Proof. The complex number identity states that if x + iy = u + iv, then x =u,y = v [6]. To
2kl 2k
satisfy [[i-,ae n =]l;=1(c —be =), keeping all n roots in LHS and RHS identical,

ae n =c—be n mustbe satisfied.

2k . . Z2krm 2krx . . Z2km
a(cos—+ isin—) = ¢ — b(cos — + isin—).
n n n n
. 2kx . 2krx
asin— = —bsin—, a = —b.
n n
2k 2kn
acos— =c¢ — bcos—, ¢ = 0.
n n
So, c=0,a = —b. n

Lemma 3.1 comprises above mentioned step @ and step @), where step @ makes

c =0 and step @ makes a™ =c"—b" = —b". That is to say, only trivial solutions can

satisfy a" = c¢™ — b™ for n = 3.

4. Conclusion

In this thesis, we related LHS and RHS of a" = ¢™ — b" to the constant terms of two
monic polynomials x™ —a™ and x™ — (¢ — b™). By doing so, the proof of FLT is simplified
to the proof of whether the two polynomials can be identical when n > 3. The properties of
the two poynomials such as factoring, root structures and graphs showed that x" —
(c™ —b™) = x™ —a™ can’t be achieved for n > 3, hence a™ # ¢c™ — b™ for n > 3. When n =
1,2, there can be infinitely many x™ —a™ = x™ — (¢™ — b™) solutions, but when n > 3, the
advent of the complex roots latches further solutions, except for trivial ones. That is to say,
as for the solutions of a™ + b™ = c¢™, a+ b = c is the first and last solution for odd n, and
a’ + b? = ¢? is the first and last solution for even n.
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