Mirror composite numbers. Their factorization and their relationship with Goldbag conjecture.

Ángeles Jimeno Yubero. Óscar E. Chamizo Sánchez. Redonda Kingdom University, Faculty of Sciences, Department of Mathematics.

Abstract:

In this paper we present the concept of mirror composite numbers. Mirror composite numbers are composite numbers of the form 2n-p for some n positive natural number and p prime. We shall show that the factorization of these numbers have interesting properties in order to face the Goldbach conjecture [1][2] by the divide et impera method.

Definitions:

From now on, m and n are positive integer numbers, p and q are prime numbers.

All prime numbers $p \ge 5$ are of the form 6m+1 or 6m-1. A prime of the form 6m+1 is a **right prime**; a prime of the form 6m-1 is a **left prime**.

A mirror composite number is a composite number of the form 2n-p for some n and some prime $p \ge 5$.

Given a mirror composite 2n-p, if p=6m+1, i.e., if p is a right prime, 2n-p is a right mirror composite (r.m.c.).

Given a mirror composite 2n-p, If p=6m-1, i.e., if p is a left prime, 2n-p is a **left mirror composite (l.m.c.)**.

Lemma 1.

Fixed n, if 3 is a factor of some l.m.c (respectively r.m.c.), 3 is a factor of every l.m.c. (r.m.c.) and 3 is not a factor of any r.m.c. (l.m.c)

Proof:

The difference between two l.m.c. (r.m.c.) is 6n. If $3 \mid m$, $3 \mid m \pm 6n$. On the other hand, if $3 \mid 2n-(6m-1)$, then $3 \nmid 2n-(6m+1)$ and *viceversa*.

Lemma 2.

Fixed n, if $q \neq 3$ is a prime factor of two different l.m.c. (respectively r.m.c.), the difference between them is a multiple of 6q so the minimum gap between two consecutive occurrences of factor q is 6q for all l.m.c. (r.m.c.).

Proof:

If $q \mid 2n-(6x-1)$ and $q \mid 2n-(6y-1)$ exists z such that zq=6(x-y), so z is multiple of 6, given that q is a prime and $q \neq 2,3$.

If $q \mid 2n-(6x+1)$ and $q \mid 2n-(6y+1)$ exists z such that zq=6(x-y), so z is

multiple of 6, given that q is a prime and $q \neq 2,3$.

Goldbach conjecture states that for all n and all p such that $3 \le p \le n$, some 2n-p is a prime, i.e., not every 2n-p is composite.

Let's assume for the sake of contradiction that exists n such that every 2n-p is composite. Then, 3 consecutive odd numbers, 2n-3, 2n-5 and 2n-7 are composite, so one and only one of them must be multiple of 3.

Case A: 3 | 2n-7:

 $3 \mid 2n-7 \Rightarrow 3 \mid 2n-(6m+1)$ for all m (**Lemma 1**). Every right mirror composite is a multiple of 3 and no left mirror composite is a multiple of 3. So all elements of the sequence:

where $q \ge 5$ is a left prime, must be factorized. There are k consecutive primes p_i (i=1,2,3, ..., k) from p_1 =5 to p_k , where p_k is the largest prime $p_k \le \sqrt{2n-5}$, available for that factorization.

Now, given the correlative sequence of odd numbers 2n-3, 2n-5, 2n-7, 2n-9, 2n-11, 2n-13, 2n-15, 2n-a..., let be 2n-a_i the number containing the first occurrence of prime factor p_i in that sequence.

Notice that:

For each p_i, a_i is unique.

 $3 \le a_i \le 2p_i + 1$.

For some i, $a_i = 3$; for some i, $a_i = 5$; for some i, $a_i = 11$ MOD p_i ; for some i, $a_i = 17$ MOD p_i ; for some i, $a_i = 23$ MOD p_i and so on.

2n-q, i.e., 2n-(6m-1), is composite if and only if exists i such that 6m- $1\equiv a_1 \mod p_i$ (**Lemma 2**).

Now, let's state conditions in order to find some 2n-q with q=6m-1 and q inside the interval $\sqrt{2n-5} \le q \le n$ that can not be factorized:

- 1) q is a prime, i.e., q is not multiple of any p_i , so $6m-1 \not\equiv 0 \mod p_i$ for all i.
- 2) There is no p_i factor available for 2n-q, so 6m- $1 \not\equiv a_1 mod \ p_i$ for all i.

Prime condition	No factor available condition
for 6m-1	for 2n-(6m-1)
$6m \not\equiv 1 \mod 5$	$6m \not\equiv (a_1+1) \bmod 5$
$6m \not\equiv 1 \bmod 7$	$6m \not\equiv (a_2+1) \bmod 7$

$6m \not\equiv 1 \mod 11$	$6m \not\equiv (a_3+1) \bmod 11$
$6m \not\equiv 1 \bmod 13$	$6m \not\equiv (a_4+1) \bmod 13$
•••••	• • • • • • • • • • • • • • • • • • • •
$6m \not\equiv 1 \bmod p_k$	$6m \not\equiv (a_k+1) \bmod p_k$

Hence for each p_i there are *at least* p_i -2 remainders moduli p_i that fullfill the conditions. That amounts up to a minimum of $(p_1-2)(p_2-2)(p_3-2)...(p_k-2)$, id est, 3.5.9.11.... (p_k-2) different systems of linear congruences with prime moduli. The chinese remainder theorem ensures that each one of them has a different and unique solution moduli 5.7.11.13... p_k .

It's necessary then to prove that exists at least a multiple of 6 that fullfills the preceding conditions inside the interval:

$$\sqrt{2n-5} < 6m < n$$

So let's prove that at least one in $3.5.9.11...(p_k-2)$ solutions from $5.7.11.13...p_k$ systems lies inside the aformentioned interval.

Let be M the highest number of consecutive occurrences of 6m that do not fullfill the conditions.¹ Is not easy to figure out the value of M, given the unpredictable nature of prime number distribution. But we can prove that exists an upper bound S for M such that for sufficient large n:

$$S < \left[\frac{n - \sqrt{2n - 5}}{6} \right] \tag{1}$$

Given p_k , an upper bound for the total number of occurrences of each one of the two remainders moduli p are $2 \left[\frac{p_k}{p} \right]$. So

$$S = 2\left(\left\lceil\frac{p_k}{5}\right\rceil + \left\lceil\frac{p_k}{7}\right\rceil + \left\lceil\frac{p_k}{11}\right\rceil + \left\lceil\frac{p_k}{13}\right\rceil + \dots + \left\lceil\frac{p_k}{p_{k-1}}\right\rceil + 1\right)$$
 is an upper bound for M:

k	p_{k}	M	S
1	5	2	2
2	7	4	6
3	11	8	11
4	13	13	16

¹ For all those who, like myself, enjoy practical questions that sometimes shed light on some more abstract matter of discussion, the problem to determine an accurate value for \mathbf{M} is the same as the following: Suppose you may not work on 2 predetermined days in five, 2 predetermined days in seven, 2 days in 11, 2 in 13 and so on until 2 days in p_k days. What is the maximum number, as a function of p_k , of consecutive days off?

k	p_{k}	M	S
5	17	19	24
6	19	22	28

In turn:

$$\left[\frac{p_k}{5} \right] + \left[\frac{p_k}{7} \right] + \left[\frac{p_k}{11} \right] + \left[\frac{p_k}{13} \right] + \dots + \left[\frac{p_k}{p_{k-1}} \right] + 1 <$$

$$\frac{p_k}{2} + \frac{p_k}{3} + \frac{p_k}{5} + \frac{p_k}{7} + \frac{p_k}{11} + \dots + \frac{p_k}{p_{k-1}} + 1 =$$

$$p_k \left\{ \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{11} \dots + \frac{1}{p_{k-1}} + \frac{1}{p_k} \right\}$$

The series between brackets is the well known partial summation of the reciprocal of the primes whose divergence was proved by Euler in 1737 together with the relationship:

$$\sum_{p \le x} \frac{1}{p} \approx \log\log(x)$$
 (2)

Taking $x=p_k$ and given that an upper bound for all $x>e^4$ in (2) is $\log\log x+6$ [3] allows us to state:

$$S < 2p_k(loglogp_k+6)$$

Now it's inmediate to conclude, since $p_k \le \sqrt{2n-5}$, that (1) holds for, let's say, every $2n \ge 10^6$.

For every 2n<10⁶ the verification of the conjecture have alredy been settled.

That completes the demonstration.

Hence, for all 2n such that $3 \mid 2n-7$, i.e., for all $2n \equiv 1 \mod 3$, exists some 2n-q that can not be factorized, so 2n-q is prime and the conjecture holds for all $2n \equiv 1 \mod 3$.

Case B: 3 | 2n-5:

 $3|2n-5\Rightarrow 3|2n-(6m-1)$ for all m (**Lemma 1**). So every left mirror composite is a multiple of 3 and no right mirror composite is a multiple of 3...

Following the same thought process than before, with q a right prime

of the form 6m+1, it's straightforward to conclude that the conjecture holds for all 2n such that $3 \mid 2n-5$, i.e., for all $2n \equiv 2 \mod 3$.

Case C: 3 | 2n-3:

Interesting matter of forward research.

November, 6, 2023. Ángeles Jimeno Yubero & Óscar E. Chamizo Sánchez. ajedrezjrodrigo@gmail.com PA³.

References:

[1] Christian Goldbach, Letter to L. Euler, June 7 (1742).

[2] Vaughan, Robert. Charles. Goldbach's Conjectures: A Historical Perspective. Open problems in mathematics. Springer, Cham, 2016. 479-520.

[3] Pollack, Paul. Euler and the partial sums of the prime harmonic series. University of Georgia. Athens. Georgia.