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Abstract: 
 
 

 In this paper we present the concept of mirror composite numbers. 
Mirror composite numbers are composite numbers of the form 2n-p for some 
n positive natural number and p prime. We shall show that the factorization 
of these numbers have interesting properties in order to face the Goldbach 
conjecture [1][2] by the divide et impera method. 
 

Definitions: 
From now on, m and n are positive integer numbers, p and q are prime 

numbers.  
All prime numbers p ≥ 5 are of the form 6m+1 or 6m-1. A prime of 

the form 6m+1 is a right prime; a prime of the form 6m-1 is a left prime.  
A mirror composite number is a composite number of the form 2n-p 

for some n and some prime p ≥ 5.  
Given a mirror composite 2n-p, if p=6m+1, i.e., if p is a right prime, 

2n-p is a right mirror composite (r.m.c.).  
Given a mirror composite 2n-p, If p=6m-1, i.e., if p is a left prime, 2n-

p is a left mirror composite (l.m.c.). 
 

 Lemma 1.  
Fixed n, if 3 is a factor of some l.m.c (respectively r.m.c.), 3 is a factor 

of every l.m.c. (r.m.c.) and 3 is not a factor of any r.m.c. (l.m.c)  
 Proof:  

The difference between two l.m.c. (r.m.c.) is 6n. If 3|m, 3|m±6n. On 

the other hand, if 3|2n-(6m-1), then 3 ∤ 2n-(6m+1) and viceversa.  
 

Lemma 2.  
Fixed n, if q≠3 is a prime factor of two different l.m.c. (respectively 

r.m.c.), the difference between them is a multiple of 6q so the minimum gap 
between two consecutive occurrences of factor q is 6q for all l.m.c. (r.m.c.). 

 Proof:  
If q | 2n-(6x-1) and q | 2n-(6y-1) exists z such that zq=6(x-y), so z is 

multiple of 6, given that q is a prime and q ≠ 2,3. 
If q | 2n-(6x+1) and q | 2n-(6y+1) exists z such that zq=6(x-y), so z is 



multiple of 6, given that q is a prime and q ≠ 2,3. 
 

 Goldbach conjecture states that for all n and all p such that 3≤p≤n, 
some 2n-p is a prime, i.e., not every 2n-p is composite.  

Let´s assume for the sake of contradiction that exists n such that every 
2n-p is composite. Then, 3 consecutive odd numbers, 2n-3, 2n-5 and 2n-7 are 
composite, so one and only one of them must be multiple of 3. 
 
 Case A: 3|2n-7: 
 
 3|2n-7  3|2n-(6m+1) for all m (Lemma 1). Every right mirror 
composite is a multiple of 3 and no left mirror composite is a multiple of 3. 
So all elements of the sequence: 
 

2n-3, 2n-5, 2n-11, 2n-17, 2n-23, 2n-29, 2n-41, …., 2n-q 
 

where q ≥ 5 is a left prime, must be factorized. There are k consecutive 
primes pi (i=1,2,3, …, k) from p1=5 to pk, where pk is the largest prime           

pk   ≤ 52 −n , available for that factorization. 
 Now, given the correlative sequence of odd numbers 2n-3, 2n-5, 2n-7, 
2n-9, 2n-11, 2n-13, 2n-15, 2n-a…, let be 2n-ai the number containing the first 
occurrence of prime factor pi in that sequence.  
Notice that: 

For each pi, ai is unique.  
3≤ai≤2pi+1. 
For some i, ai = 3; for some i, ai=5; for some i, ai=11 MOD pi; for 

some i, ai=17 MOD pi; for some i, ai=23 MOD pi and so on. 
2n-q, i.e., 2n-(6m-1), is composite if and only if exists i such that 6m-

1≡a1mod pi  (Lemma 2). 
 
Now, let´s state conditions in order to find some 2n-q with q=6m-1 

and q inside the interval 52 −n  ≤ q ≤ n that can not be factorized:  

1) q is a prime, i.e., q is not multiple of any pi, so 6m-1≢ 0 mod pi for 
all i. 

2) There is no pi factor available for 2n-q, so 6m-1 ≢ a1mod pi for all i.  
  
  
 
Prime condition   No factor available condition 
 for 6m-1    for 2n-(6m-1) 
 

 6m ≢ 1 mod 5   6m ≢ (a1+1) mod 5 

6m ≢ 1 mod 7   6m ≢ (a2+1) mod 7 



6m ≢ 1 mod 11   6m ≢ (a3+1) mod 11 

6m ≢ 1 mod 13   6m ≢ (a4+1) mod 13 
…………..    ……………….  

6m ≢ 1 mod pk   6m ≢ (ak+1) mod pk 

 

Hence for each pi there are at least pi-2 remainders moduli pi that fullfill 
the conditions. That amounts up to a minimum of (p1-2)(p2-2)(p3-2)…(pk-2),  
id est, 3.5.9.11.…(pk-2) different systems of linear congruences with prime 
moduli. The chinese remainder theorem ensures that each one of them has a 
different and unique solution moduli 5.7.11.13… pk. 

It´s necessary then to prove that exists at least a multiple of 6 that 
fullfills the preceding conditions inside the interval: 

 

52 −n  < 6m < n 
 
So let´s prove that at least one in 3.5.9.11…(pk-2) solutions from 

5.7.11.13…pk systems lies inside the aformentioned interval.  
Let be M the highest number of consecutive occurrences of 6m that do 

not fullfill the conditions.1 Is not easy to figure out the value of M, given the 
unpredictable nature of prime number distribution. But we can prove that 
exists an upper bound S for M such that for sufficient large n: 

 

S  < [
𝑛− √2𝑛−5

6
]      (1) 

  
Given pk, an upper bound for the total number of occurrences of each 

one of the two remainders moduli p are 2 ⌈
𝑝𝑘

𝑝
⌉. So   

S = 2(⌈
𝑝𝑘

5
⌉ + ⌈

𝑝𝑘

7
⌉ + ⌈

𝑝𝑘

11
⌉ + ⌈

𝑝𝑘

13
⌉ +  … + ⌈

𝑝𝑘

𝑝𝑘−1
⌉ +  1) 

is an upper bound for M: 
 
 

k pk M S 

1 5 2 2 

2 7 4 6 

3 11 8 11 

4 13 13 16 

 
1 For all those who, like myself, enjoy practical questions that sometimes shed light on 
some more abstract matter of discussion, the problem to determine an accurate value for 
M is the same as the following: Suppose you may not work on 2 predetermined days in 
five, 2 predetermined days in seven, 2 days in 11, 2 in 13 and so on until 2 days in pk days. 
What is the maximum number, as a function of pk, of consecutive days off? 



k pk M S 

5 17 19 24 

6 19 22 28 

 
In turn:  
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The series between brackets is the well known partial summation of the 

reciprocal of the primes whose divergence was proved by Euler in 1737 
together with the relationship:   

 

  ∑
1

𝑝𝑝≤𝑥  ≈ loglog(x)   (2) 

 
Taking x=pk and given that an upper bound for all x>e4 in (2) is 

loglogx+6 [3] allows us to state: 
 

S < 2pk(loglogpk+6)  
 

Now it`s inmediate to conclude, since pk ≤ 52 −n , that (1) holds for, 
let´s say, every 2n ≥ 106. 

For every 2n<106 the verification of the conjecture have alredy been 
settled.  

That completes the demonstration. 
Hence, for all 2n such that 3|2n-7, i.e., for all 2n ≡ 1 mod 3, exists 

some 2n-q that can not be factorized, so 2n-q is prime and the conjecture 
holds for all 2n ≡ 1 mod 3.  

 
Case B: 3|2n-5: 
 
3|2n-5  3|2n-(6m-1) for all m (Lemma 1). So every left mirror 

composite is a multiple of 3 and no right mirror composite is a multiple of 
3…  

Following the same thought process than before, with q a right prime 



of the form 6m+1, it´s straightforward to conclude that the conjecture holds 
for all 2n such that 3|2n-5, i.e., for all 2n ≡ 2 mod 3. 

 
Case C: 3|2n-3: 
 
Interesting matter of forward research. 
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