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Abstract 
 

Dark matter is invoked in those astronomical scenarios where there is a 

discrepancy between the baryonic mass and the dynamical mass.  Such scenarios 

include the rotation curves of disk galaxies and the high velocities of galaxies in 

galaxy clusters.  For our alternative explanation we assume there is no dark matter 

and guess that the dynamical mass is a weighted sum of the baryonic mass.  

When we do this, it turns out that the required weighting function has a simple 

power law structure, and this is sufficient to explain both disk galaxies and galaxy 

clusters.  The weighting function also enables us to predict the dynamical mass 

distribution from the baryonic mass distribution, so we can predict the rotation 

curves of disk galaxies and the velocities of galaxies in galaxy clusters.  This basic 

observational result is difficult to ignore as it is so simple, and surpasses what dark 

matter and modified gravity theories can do.  We make no use of dark matter and 

we make no changes to Newtonian gravity. 

 

  



 

 

 

1 Introduction 
 

Dark matter is a hypothetical type of matter that most astronomers believe exists and is invoked to 

explain a number of astronomical scenarios where the observed matter is insufficient to explain the 

observations.  Dark matter is well described in the Wikipedia article ("Dark matter") and the peer-

reviewed references contained therein.  The problems with dark matter are well described in the 

book "The Dark Matter Problem" (Sanders, 2010) and the peer-reviewed references that it 

contains.  The clearest observational evidence for dark matter comes from the rotation curves of 

disk galaxies, where the rotational velocity remains flat and does not show the decline expected for 

Newtonian gravitation (Lelli et al, 2016).  A second example is provided by galaxy clusters, where 

the velocities of galaxy members are far too high to be supported by the observed mass (Li et al, 

2023).  In both cases, the addition of extra mass in the form of dark matter solves the problem. 

 

When astronomers look at the rotation curves of spiral galaxies, they often find the curves are flat 

in the outer regions, i.e., the velocity is constant away from the galaxy centre.  This is in 

disagreement with Newtonian gravity where a drop off in velocity is expected.  The current way of 

explaining the observations is to postulate the existence of large amounts of dark matter in a 

spherical halo surrounding the galaxy.  Given the distribution of baryonic matter across a spiral 

galaxy, astronomers cannot predict the shape of the rotation curve; they can only calculate the 

amount of dark matter that is required to explain the observed velocities (Sanders, 2010).  So dark 

matter has explanatory power but no predictive power. 

 

When astronomers look at galaxy clusters, they can estimate the amount of baryonic matter by 

observing the individual galaxy members and by observing the X-ray emission from the hot gas.  

Such observations show that the galaxies account for around 10% of the baryonic mass; the gas 

supplying the other 90%.  Separately, astronomers can observe the velocities of the galaxies and 

apply the virial theorem to obtain the so-called dynamical mass.  For undisturbed clusters, they can 

assume the X-ray gas is in hydrostatic equilibrium and obtain a second estimate of the dynamical 

mass.  And they can also observe the gravitational lensing of remote galaxies by the whole cluster 

and obtain a third estimate of the dynamical mass.  The different measures of the dynamical mass 

are in good agreement with one another but are around five times greater than the baryonic mass.  

As with spiral galaxies, the current way of explaining this discrepancy is to assume galaxy clusters 

have their own haloes of dark matter (Sanders, 2010).  Again the addition of dark matter can 

explain the observations, but it cannot predict them. 

 

No completely satisfactory answer has been found for the mass discrepancy observed in disk 

galaxies and galaxy clusters (and other scenarios), i.e. the discrepancy between the baryonic and 

dynamical masses.  The problem is the subject of intense research activity amongst both 

astronomers and physicists.  Currently, there are two classes of solution, 

(a) dark matter.  Some new form of non-baryonic matter exists beyond the particles in the 

standard model of particle physics.  Example of such particles include: WIMPs; sterile 

neutrinos; axions.  The matter discrepancy is solved by postulating the existence of one of 

these hypothetical particles and adding in sufficient quantities of them so that the problem 

goes away.  Most astronomers and physicists believe that some form of dark matter exists. 

(b) modification of the law of gravity.  There is no dark matter, and the observed mass 

discrepancy arises because our law of gravity is incomplete in the regimes of disk galaxies 

and galaxy clusters.  The best known of these hypotheses is MOND (Modified Newtonian 

Dynamics), first suggested by Milgrom in 1983 (Sanders, 2010).  For MOND, the usual 



 

 

Newtonian formula applies in high acceleration regimes, and a modified formula applies in 

low acceleration regimes.  The crossover acceleration is around 1.0×10-10 m.s-2. 

We offer a third solution, namely, 

(c) there is no dark matter, the observed matter is all there is, and Newtonian gravity applies.  

We guess that the dynamical mass is the weighted sum of the baryonic mass and we see 

where this guess takes us.  Our guess leads naturally to the observed dynamical mass being 

larger than the observed baryonic mass, and so provides an alternative explanation for the 

dark matter problem. 

 

In Section 2 we explain the terms baryonic mass and dynamical mass, and how they relate to the 

dark matter problem.  Section 3 looks at weighted sums and Section 4 shows how a weighted sum 

of the baryonic mass leads to a measure of the dynamical mass.  Section 5 shows how we can 

evaluate the weights from observations of the baryonic and dynamical masses.  Section 6 shows 

the data for a few disk galaxies and Section 7 shows the data for a few galaxy clusters.  Section 8 

examines the linear relationship for the weighting function that drops out of the observations.  

Section 9 explains how the linear relationship for the weights can be used to predict the dynamical 

mass from the baryonic mass.  Section 10 looks at the different forms of the gravitational 

acceleration for (a) dark matter, (b) modified gravity, and (c) our weighting function.  Section 11 is a 

brief note on how we can also explain gravitational lensing.  We end the paper in Section 12 with a 

discussion of what our result means. 

 

Much of the material presented in this paper has already appeared in viXra article 2308.0030 

(2023) "A linear relationship between the baryonic and dynamical masses of disk galaxies and 

galaxy clusters".  However, the approach in that paper was somewhat more complicated than the 

more straightforward explanation put forward here. 

 

In this paper we provide an alternative explanation to dark matter for galaxies, galaxy clusters, and 

gravitational lensing.  Other areas invoking dark matter will be dealt with in a separate paper 

covering: physical cosmology; the acoustic peaks in the power spectrum of the cosmic microwave 

background; and structure formation. 

 

  



 

 

 

2 Baryonic  mass  and  dynamical  mass 
 

Physicists working on the Earth and within the solar system do not have a problem with mass.  The 

different methods they use to measure masses, in particle accelerators, in laboratories, in 

satellites, and in space probes, are all in good agreement with one another.  There are no 

inconsistences or discrepancies, and no need to introduce the concepts of baryonic mass and 

dynamical mass.  It is the astronomers who have the problems.  And it is the astronomers who 

have caused all the trouble by introducing the concepts of baryonic mass, dynamical mass, and 

dark matter.  Dark matter cannot be made up of particles from the standard model of particle 

physics (Sanders, 2010), and is often referred to as "non-baryonic".  By extension, this means 

normal matter is usually referred to as "baryonic". 

 

Baryonic mass is simply the amount of normal matter in an object, be it a planet, a star, a galaxy, 

or a galaxy cluster.  We give a couple of examples. 

(a) The baryonic mass, Mbar, is what we get when we multiply the volume, V, of an object by its 

density, ρ. 
 

  𝑴bar  =   𝑽 ×  𝝆   (1) 
 

(b) In astronomy we can estimate the baryonic mass by using photometry to measure the light 

output of an object, I , and multiplying that by the mass-to-light ratio, Υ. 
 

  𝑴bar  =   𝑰 ×  𝜰   (2) 
 

Dynamical mass is the amount of matter an object must have to account for its dynamical 

properties.  It is the mass that appears in Newton's laws of motion and Newton's law of gravity.  A 

couple of examples should clarify this. 

(a) The rotational velocity, v, of a disk galaxy, arising from the central mass, Mdyn, is given by 
 

 
 𝒗𝟐  =   

𝑮 𝑴dyn 

𝒓
   (3) 

 

 When we measure the velocity and use it to determine the mass, then that is the dynamical 

mass. 

(b) The mass of a galaxy cluster, as determined by the virial theorem, is given by 
  

 
 𝑴dyn   =   

𝑽𝟐 𝑹

𝑮
   (4) 

 

 where  V  is the average velocity of galaxy members;  R  is the characteristic size of the 

cluster.  Again the mass, Mdyn, is the dynamical mass. 

 

We can see how see how baryonic mass and dynamic mass come together by considering the 

example of the rotation curve for disk galaxy NGC 4157, shown in Figure 1.  The black diamonds 

are the measured velocities.  The coloured lines are the contributions to the rotation curve from the 

different baryonic components, as measured by photometry: purple line for the central bulge; 

orange line for the stars; green line for the gas; blue line for the baryonic total.  It is clear that the 

blue line, representing the total baryonic mass, falls a long way short of the observations. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 Figure 1.  The rotation curve for disk galaxy NGC 4157.  Black diamonds are the 

observations.  The coloured lines are the contributions, measured by photometry, for the 

central bulge (purple), stars (orange), gas (green), and total (blue).  The blue line (baryonic 

mass) falls a long way short of the observations (dynamical mass).  Data from Lelli et al 

(2016). 

 

 

Although not strictly true for disk galaxies, we can get at the cumulative mass, Mcum, inside radius, 

r, from the rotational velocity, v, using 
 

 
 𝑴cum(𝒓)   =   

𝒗𝟐 𝒓

𝑮
   (5) 

 

This is shown for NGC 4157 in Figure 2.  The black diamonds show the cumulative dynamical 

mass, corresponding to the black diamonds of Figure 1.  And similarly, the blue line shows the 

cumulative baryonic mass, corresponding to the blue line of Figure 1.  It is clear that the baryonic 

mass has converged by a radial distance of 10 kpc, with very little matter being added beyond that 

point.  However, the dynamical mass continues increasing to the edge of the plot and shows no 

signs of slowing down. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 Figure 2.  The cumulative mass distribution for disk galaxy NGC 4157, as derived from 

Figure 1.  The black diamonds are the observations of dynamical mass; the blue line shows 

the observations of baryonic mass. 
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The usual explanation for the discrepancy between the masses, as shown in Figure 2, is that there 

is (on average) around five times as much non-baryonic dark matter as normal baryonic matter.  

The dark matter is presumed to exist as a spherical halo surrounding the galaxy. 

 

  



 

 

 

3 A  weighted  sum 
 

Our assumption is that there is no dark matter, and that the baryonic matter we observe is all there 

is.  We make the guess that the required dynamical mass is some, as yet unspecified, weighted 

sum of the observed baryonic mass.  In this section we examine what sort of weighted sum we 

need. 

 

In many situations, where several identical items contribute to a total, we can obtain the total by 

simply adding up the individual contributions 
 

  𝑴total   =    ∑ 𝒎𝒊

𝒊

  (6) 

 

An example would be adding up gold coins to find out how much money we have. 

 

In other situations, where items make different contributions, we need to take a weighted sum, with 

the individual weights, wi, defining the size of the contributions 
 

  𝑴total   =    ∑ 𝒘𝒊 𝒎𝒊

𝒊

  (7) 

 

An example would be adding up coins made of gold, silver, or bronze, where we must take the 

value of the metal into account. 

 

Equation (7) is not completely satisfactory, as the weights are not tied down or normalised.  Also, 

unless the weights are pure numbers, then the units do not match either.  A better way to get the 

total mass is to use something along the lines of 
 

 
 𝑴total   =    

∑ 𝒘𝒊 𝒎𝒊𝒊

∑ 𝒘𝒊𝒊
  (8) 

 

where the weight appears in both the numerator and denominator.  We want to do something 

similar in order to get at the dynamical mass from the baryonic mass. 

 

There are a couple of points we need to consider when dealing with disk galaxies and galaxy 

clusters. 

Firstly, for disk galaxies, each increment of mass can be considered to be a uniform ring of 

material centred on the galaxy centre.  Binney & Tremaine (2008) have shown that, for disk 

galaxies, we can consider the mass as acting at the galaxy centre, without incurring significant 

error, i.e. like a spherical shell.  And for galaxy clusters, the increment of mass is a uniform 

spherical shell, which acts as if the mass is at the cluster centre. 

Secondly, we know from experiments on the Earth and within the solar system that, in our local 

neighbourhood, the dynamical mass equals the baryonic mass. 

 

We can achieve our desired weighted mass as a slight modification of equation (8) 
 

 
 𝑴dyn(𝒓)   =    

∑ 𝒘𝒊 𝒎𝒊𝒊

𝒘(𝒓)
  (9) 

 



 

 

where w(r) is the weight at r.  So, to get the dynamical mass, we take the individual baryonic 

masses, multiply them by their individual weights, add them up, and finally divide the sum by the 

weight at the location in question. 

The weights, w(r), do not have absolute values; only relative values.  This is clear from equation 

(9), where the weights appear in both the numerator and denominator.  Perhaps a better way of 

writing equation (9) is as 
 

  {𝒘(𝒓)  𝑴dyn(𝒓)}   =  ∑{𝒘𝒊  𝒎𝒊}

𝒊

    (10) 

 

Here it can be seen that all the masses are multiplied by their weighting function; so the symmetry 

is somewhat better. 

 

As mentioned above, for disk galaxies and galaxy clusters, we can consider the mass of a ring or a 

shell as acting at the centre.  For our weighted sum, the gravitational acceleration is then given by 
 

 
 𝒈(𝒓)  =  −

𝑮 𝑴dyn (𝒓)

𝒓𝟐
  =   −

𝑮

𝒓𝟐
  

∑ 𝒘𝒊 𝒎𝒊𝒊

𝒘(𝒓)
 (11) 

 

This is the equation we are going to apply to the observed data for disk galaxies and galaxy 

clusters. 

 

If we have a region where the weight is a constant, wc, then equation (11) becomes 
 

 
   

𝑮 𝑴dyn (𝒓)

𝒓𝟐
  =   

𝑮

𝒓𝟐
  

∑ 𝒘𝒄 𝒎𝒊𝒊

𝒘𝒄
  =   

𝑮

𝒓𝟐
 ∑ 𝒎𝒊  =  

𝒊

𝑮 𝑴bar(𝒓)

𝒓𝟐
  (12) 

 

The weights in the numerator and denominator cancel out, and the dynamical mass equals the 

baryonic mass.  So our weighted sum automatically satisfies the basic requirement that no 

difference between the baryonic mass and the dynamical mass will show up in any local 

experiment. 

This also means we can make the prediction that no dark matter is needed for the Earth; the solar 

system, the solar neighbourhood, star clusters, galaxy centres, and galaxy cluster centres. 

 

  



 

 

 

4 How  the  weights  work 
 

We have made the arbitrary decision to introduce hypothetical weights that act on the observed 

baryonic mass to give the observed dynamical mass.  We need to understand what the benefits of 

this action are.  From now on we use the symbol ξ  for the weights, rather than w; as this fits in with 

previous work. 

 

Consider the following hypothetical example.  We have a central mass of 100 units and a weighting 

function that decreases away from the centre.  We look at what this means for massless test 

particles at various distances. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 Figure 3.  Weight function.  An arbitrarily set of values for the weights, declining away from a 

central mass. 

 

 

Figure 3 shows how the weighting function varies with distance.  We have chosen four arbitrary 

values so that the weighting function decreases away from the central mass. 

 

Figure 4 (below) shows the cumulative mass as measured by a remote observer.  The green line is 

the cumulative baryonic mass, which remains constant at 100 units.  This follows because we are 

working with a central mass with no additional mass away from the centre.  It corresponds to what 

observers would measure for galaxies based on photometric data and a mass-to-light ratio.  The 

blue line is the cumulative dynamical mass, which increases away from the centre in accordance 

with equation (10).  This corresponds to what observers deduce from the rotational velocities of 

disk galaxies and from the velocities of galaxy members in a galaxy cluster.  It is seen that even 

though there is no additional mass away from the centre, a variation in the weights can give rise to 

an increasing dynamical mass. 

Figure 4 is illustrative of diagrams often presented for galaxy clusters (c.f. Figure 2 above). 
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 Figure 4.  Cumulative mass.  The green line is the cumulative baryonic mass as measured 

by a remote observer.  The blue line is the cumulative dynamical mass as measured by a 

remote observer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.  Rotation Curve.  The green line (baryonic) is the expected curve for a central mass 

and Newtonian gravity.  The blue line (dynamical) is what observers measure for the 

dynamical mass. 

 

 

Figure 5 shows the rotation curve for our hypothetical values.  The relative velocities have been 

calculated from the usual Newtonian formula 
 

 

 𝒗 =  √
𝑮 𝑴

𝒓
  (13) 

 

and setting  G=1.  The green line shows the usual Newtonian decline expected for a central mass; 

it is based on equation (13) where the mass is the baryonic mass.  The blue line is what observers 

would see for massless test particles in a disk galaxy; it is also based on equation (13) where this 

time the mass is the dynamical mass.  This figure shows how a weighting function can give rise to 

rotational velocities that are much higher than the expected velocities. 

Figure 5 is illustrative of diagrams often presented for disk galaxies (c.f. Figure 1 above). 
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Distance weight 
baryonic 

mass 

dynamical 

mass 

baryonic 

velocity 

dynamical 

velocity 

0 10 100 100   

10 5 100 200 3.2 4.5 

20 2 100 500 2.2 5.0 

30 1 100 1000 1.8 5.8 

 

 Table 1.  The hypothetical values used in Figures 3, 4 & 5. 

 

 

For a disk galaxy, where the density falls off exponentially, we can assume the mass interior to a 

given radius is concentrated at the centre without incurring any significant errors (Binney & 

Tremaine, 2008).  The rotational velocity, v(r) , at distance  r  is then given by. 
 

 
  𝒗(𝒓)𝟐   =    

𝑮

𝒓  𝝃(𝒓)
∫ 𝝃(𝒙) 𝒅𝑴bar(𝒙) 

𝒓

𝟎

 (14) 

 

where 𝝃(𝒓) is the value of the weighting function at  r ;  𝝃(𝒙) is the value of the ξ-function at X;  

𝒅𝑴bar(𝒙) is the baryonic mass of the incremental shell at X.  So each incremental shell is weighted 

by the local value of  ξ, and the whole integral is then divided by the value of  ξ  at  r . 

This formula is used for explaining the rotation curves of disk galaxies as covered in the next 

section. 

 

For a galaxy cluster, which is roughly spherical in shape, the total dynamical mass interior to radius  

r  is given in terms of the baryonic mass by 
 

 
 𝑴(𝒓)dyn  =    

𝟏

𝝃(𝒓)
 ∫ 𝝃(𝒙) 𝒅𝑴bar(𝒙)  

𝒓

𝟎

 (15) 

 

where  𝑴(𝒓)dyn  is the cumulative dynamical mass interior to  r  ;  𝝃(𝒙)  is the value of the ξ-

function at X;  𝒅𝑴bar(𝒙)  is the baryonic mass of the incremental shell at X. 

This formula is used for explaining the relationship between the baryonic and dynamical masses of 

galaxy clusters. 

 

We can construct more realistic diagrams by assuming a density distribution that drops off 

exponentially, so that the mass of an incremental shell is given by 
 

   𝒅𝑴bar(𝒙)  =  𝟒 𝝅 𝝆𝒄 𝒆−𝒙/𝒙𝟎  𝒙𝟐 𝒅𝒙  (16) 
 

where ρc is the central density;  x0 is the characteristic distance. 

We also choose, somewhat arbitrarily, the weighting function 
 

 
 𝝃(𝒙) =    

𝟏

𝟏 + 𝒙
  (17) 

 

This behaves as  1/x  at large distances and also behaves normally at the centre.  The following 

figures show the relative cumulative mass distributions and relative rotational velocities. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6.  Cumulative mass distributions.  The green line shows the relative cumulative 

baryonic mass distribution for the exponential density distribution of equation (16).  The blue 

line shows the relative cumulative dynamical mass distribution after applying the weighting 

function of equation (17). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 Figure 7.  Rotation Curve.  The green line is the rotation curve for the baryonic mass 

corresponding to the exponential density of equation (16).  The blue line shows the rotation 

curve for the dynamical mass distribution after apply the weighting function of equation (17).  

The velocities and distances are relative. 

 

 

Figure 6 is very similar to the observed cumulative mass distributions for disk galaxies.  The 

baryonic mass has converged by relative distance 15, with little additional mass beyond this point.  

The dynamical mass continues to increase.  The plot is also similar to the cumulative mass 

distributions for galaxy clusters.  However, the observed cumulative baryonic mass tends to show 

a continuing increase, rather than a levelling off. 

 

Figure 7 is very similar to the observed rotation curves of disk galaxies.  The observed baryonic 

masses (stars and gas) lead to an expected rotation curve shown by the green curve.  The 

observed rotation curves are very similar to the blue line which shows the derived dynamical mass. 
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5 Calculating  the  weights 
 

So far we have made the arbitrary decision that there is no dark matter and that the observed 

dynamical mass is the weighted sum of the observed baryonic mass.  We now need to calculate 

the values of the weights from the observations, and see where these might lead us, if anywhere. 

 

If we know the baryonic & dynamical masses and the weights from the centre of an object out to 

distance r , then we know all of the values in equation (9), which can be written in incremental form 

as 
 

 
 𝝃(𝒓) ∑ 𝜟𝑴dyn(𝒙)

𝒓

𝟎

=   ∑ 𝝃(𝒙) 𝜟𝑴bar(𝒙)

𝒓

𝟎

  (18) 

 

where 𝜟𝑴dyn(𝒙) is an increment in the dynamical mass; 𝜟𝑴bar(𝒙) is an increment in the baryonic 

mass. 

 

For the next point further out, labelled (r+1), we have 
 

 

 𝝃(r+1) ∑ 𝜟𝑴dyn(𝒙)

𝒓+𝟏

𝟎

=   ∑ 𝝃(𝒙) 𝜟𝑴bar(𝒙)

𝒓+𝟏

𝟎

  (19) 

 

 
 =    ∑ 𝝃(𝒙) 𝜟𝑴bar(𝒙) +  𝝃(r+1) 𝜟𝑴bar(r+1) 

𝒓

𝟎

   

 

or 
 

 

 𝝃(r+1) {∑ 𝜟𝑴dyn(𝒙)

𝒓+𝟏

𝟎

−  𝜟𝑴bar(r+1)} =   ∑ 𝝃(𝒙) 𝜟𝑴bar(𝒙)

𝒓

𝟎

  (20) 

 

which defines the weight at the next point out, ξ(r+1) .  So if we know the weight at one point, then 

we can calculate the weight at the next point.  This enables us to integrate outwards from the 

centre of an object to its periphery.  We just need to know the starting value to kick the procedure 

off. 

 

We recall that we expect the weight to have a constant value. ξc, across the object's centre, and 

that we only have relative values for the weights, not absolute.  So, we are free to assign the 

weight a value of 1000 (say) at the centre.  With just one data point for the centre, we have 
 

 
 𝑴dyn(𝟎) =   

𝝃𝒄 𝑴bar (𝟎)

𝝃(𝒓𝟏)
=  

𝟏𝟎𝟎𝟎  𝑴bar (𝟎)

𝝃(𝒓𝟏)
   (21) 

 

where  Mdyn(0)  is the observed dynamical mass of the centre;  Mbar(0)  is the observed baryonic 

mass of the centre; r1 is the radius of the centre; ξ(r1) is then our estimate of the weight at the edge 

of the centre.  So we have moved from the centre out to point  r1  and can now move further 

outwards using equation (20). 

 

Equation (20) guarantees that we can always find a positive value for the weight  ξ  at every point 

in a disk galaxy or galaxy cluster.  In this sense, our weight is no better than dark matter, where we 



 

 

can always find an amount of dark matter that balances the dynamical mass with the baryonic 

mass.  We appear to be substituting one arbitrary hypothesis (dark matter) for another arbitrary 

hypothesis (our weighting function ξ).  What we need to do now is calculate the weights for a 

number of objects and see if there is any underlying pattern.  We do this next for a sample of disk 

galaxies and galaxy clusters. 

 

 

  



 

 

 

6 Disk  galaxies 
 

Mass models and rotation curves for 175 of disk clusters have been published by Lelli et al (2016).  

70 of these were analysed in viXra paper 1903.0109 (Jo.Ke., 2019); the remainder were omitted 

because they had too few data points or only covered the central regions.  The dynamical masses 

come from the observed rotation curves.  The baryonic masses come from photometric 

observations in the infrared and radio wavelengths. 

The data on 4 galaxies are presented in viXra paper 1903.0109. 

The data on an additional 64 galaxies are presented in "SPARC galaxy rotation curves" (Jo.Ke., 

2019). 

The following pages show the data for three galaxies; the data for additional galaxies are available 

at the above locations. 

 

The upper left panel shows the rotation curves using the observed data of Lelli et al (2016).  The 

black diamonds are observed velocities.  The purple curve is the contribution to the velocity from 

the central bulge (if one exists); the orange curve from the disk of stars; the green curve from the 

gas.  The blue curve is the expected velocity given by aggregating the other components. 

 

The top right panel shows the cumulative mass distribution corresponding to the velocities in the 

top left panel.  The black diamonds give the observed total mass corresponding to the black 

diamonds in the top left panel.  The blue line gives the normal matter mass corresponding to the 

blue line in the top left panel.  This diagram shows whether the observed or expected masses are 

levelling off or are still increasing at the outer edge of the galaxy.  The observed mass usually 

shows a continuing increase; the expected mass usually shows convergence. 

 

The lower left panel is a logarithmic plot of the ξ-function against the radial distance.  The black 

diamonds are the values of the ξ-function and are based solely on the observed dynamical and 

baryonic masses.  The near linear relationship away from the cluster centre is very clear.  The red 

line is a straight line fit to the data, ignoring the first few data points.  The linear relationship came 

as a surprise; it was completely unexpected. 

 

The bottom right panel shows the rotation curve again.  The black diamonds are the same 

observed velocities as in the top left panel.  Similarly, the blue line is the same expected velocities 

as in the top left panel.  The red line is the fitted rotation curve derived by applying the red line from 

the bottom left panel for ξ-function to the blue line from the top right panel. 

 

  



 

 

 

Disk  Galaxy  NGC 2403 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Slope of ξ-function: -1.03 
 
 The red curve in the bottom right panel is the predicted shape of the rotation curve.  It is a 

good fit to the observed rotation curve (black diamonds).  It is based on the baryonic mass 
distribution (blue curve) and a straight line for the ξ-function, similar to that shown in the 
bottom left panel.  

 
 The upper right panel shows that the total baryonic mass (blue line) of the galaxy has 

converged by 15 kpc, whereas the total dynamical mass (black diamonds) continues to 
increase. 

 
 This galaxy is used as a typical disk galaxy throughout the book "The Dark Matter 

Problem" (Sanders, 2010). 
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Disk  Galaxy  NGC 3198 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Slope of ξ-function: -0.84 
 
 The red curve in the bottom right panel is the predicted shape of the rotation curve.  It is a 

good fit to the observed rotation curve (black diamonds).  It is based on the baryonic mass 
distribution (blue curve) and a straight line for the ξ-function, similar to that shown in the 
bottom left panel.  

 
 The upper right panel suggests that the total baryonic mass (blue line) has converged just 

after 40 kpc, whereas the total dynamical mass (black diamonds) continues to increase 
and shows no sign of levelling out. 
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Disk  Galaxy  NGC 4157 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Slope of ξ-function: -0.79 
 
 The red curve in the bottom right panel is the predicted shape of the rotation curve.  It is a 

good fit to the observed rotation curve (black diamonds).  It is based on the baryonic mass 
distribution (blue curve) and a straight line for the ξ-function, similar to that shown in the 
bottom left panel.  

 
 The upper right panel shows that the total baryonic mass (blue line) converges around 10 

kpc, with little extra mass added beyond that.  The total dynamical mass (black diamonds) 
continues to increase and shows no sign of levelling out. 
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7 Galaxy Clusters 
 

Data on the baryonic  and dynamical masses for a number of galaxy clusters have been published 

by Li et al (2023).  We have analysed five of these clusters, omitting those that are disturbed and 

those with no X-ray data.  The dynamical masses come from the velocity dispersion of galaxy 

members and the hydrostatic mass of the gas.  The baryonic masses come from the X-ray gas, 

surface brightness fits, and the galaxy masses. 

 

The upper left panel shows the data taken from Li et al (2023).  The blue diamonds are the 

dynamical mass; green diamonds the mass of gas; orange diamonds the mass of stars.  The 

dynamical mass is the average of the different values (velocity dispersion, hydrostatic mass, 

surface brightness).  The gas mass is the average of the different values (gas mass profiles, 

surface brightness).  The data comes as a logarithmic plot, which was measured manually.  We did 

not have access to the linear (non-logarithmic) values or any tabular data. 

 

The upper right panel is identical to the upper left diagram but with the data plotted on a linear 

scale.  The blue diamonds are the dynamical masses; the green diamonds the baryonic masses.  

The baryonic mass is the sum of the gas and the stars, as shown in the upper left figure. 

 

The lower left panel is a logarithmic plot of the ξ-function against the radial distance.  The black 

diamonds are the values of the ξ-function and are based solely on the observed dynamical and 

baryonic masses.  The near linear relationship away from the cluster centre is very clear.  The red 

line is a straight line fit to the data, ignoring the first two data points.  This is an observational result 

based on data from Li et al (2023) and our guess that the dynamical mass is a weighted sum of the 

baryonic mass.  The linear relationship came as a surprise; it was completely unexpected. 

 

The lower right panel is identical to the upper right diagram.  The solid red line is the predicted 

dynamical mass based on the observed baryonic and a linear ξ-function similar to that shown in 

the lower left diagram.  It is clear in all cases that the predicted dynamical mass (red line) is a good 

approximation to the observed dynamical mass. 

 

  



 

 

 

Galaxy  Cluster  A0085 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Slope of ξ-function: -1.05 
 
 The red line in the bottom right panel is the predicted curve for the dynamical mass 

distribution.  It is based on the baryonic mass distribution (green diamonds) and a straight 
line for the ξ-function, similar to that shown in the bottom left panel.  The fit is normalised 
at the 3rd data point. 
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Galaxy  Cluster  A2029 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Slope of ξ-function: -0.73 
 
 The red line in the bottom right panel is the predicted curve for the dynamical mass 

distribution.  It is based on the baryonic mass distribution (green diamonds) and a straight 
line for the ξ-function, similar to that shown in the bottom left panel.  The fit is normalised 
at the 3rd data point. 
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Galaxy  Cluster  A3158 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Slope of ξ-function: -1.20 
 
 The red line in the bottom right panel is the predicted curve for the dynamical mass 

distribution.  It is based on the baryonic mass distribution (green diamonds) and a straight 
line for the ξ-function, similar to that shown in the bottom left panel.  The fit is normalised 
at the 3rd data point. 
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8 A  linear  relationship 
 

The bottom left panels for the disk galaxies and galaxy clusters all show a strong linear relationship 

between the logarithms of our weighting function and distance.  This is an observational result 

based on the measured baryonic and dynamical masses and our guess that the dynamical mass is 

a weighted sum of the baryonic mass.  This linear relationship was entirely unexpected.  The 

connection between the baryonic and dynamical masses, as given by equation (14) for disk 

galaxies and equation (15) for galaxy clusters, gave no hint that such a linear relationship for the ξ-

function might exist. 

 

The linear relationship only applies away from the centres of the disk galaxies and galaxy clusters.  

So, we are talking about the outer 80-90%.  The inner 10-20% is the region where normal 

Newtonian gravity seems to apply and where dark matter is not required.  The outer 80% is the 

region where the mass discrepancy shows itself and this is exactly the region where the linear 

relationship is a good explanation for what is happening. 

 

The observed linear relationship means that the ξ-function is given by 
 

  log(𝝃)   =   𝜶  log(𝒓)   +   constant (22) 
 

where  α  is the slope of the linear relationship. 

Equation (22) can be rewritten, without the logarithms, as 
 

 
 
𝝃(𝒓)

𝝃𝟎
  =   (

𝒓

𝒓𝟎
)

𝜶

  (23) 

 

where the equation is normalised at the point  (ξ0, ro),  The observations show that the exponent  α  

(the slope of the linear relationship) lies in the range 
 

 −𝟎. 𝟓  >   𝜶  >   −𝟏. 𝟓  (24) 
 

It is encouraging that the linear relationship, originally found for disk galaxies (JoKe, 2019), applies 

equally well to galaxy clusters.  Of course, any hypothesis for explaining the mass discrepancies 

found in many astronomical scenarios, must be able to explain multiple scenarios, not just one.  

Nevertheless, it is a big step forward for our assumption, that a weighting function applied to the 

baryonic mass defines the dynamical mass.  And that this assumption can explain both disk 

galaxies and galaxy clusters. 

 

It is not surprising that the exponent, α, is not a fixed constant, but varies from galaxy to galaxy and 

from cluster to cluster.  Just as disk galaxies and galaxy clusters come in different sizes and 

masses, so we would expect our weighting function to come in different shapes and sizes.  

However, it is surprising that the α exponent is the only parameter that is required.  We can now 

explain the dynamical masses of both disk galaxies and galaxies clusters using an equation with 

just one free parameter, the α exponent; a different value of the α exponent is needed for each 

object. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6.  Expected behaviour of ξ-function.  The logarithm of the ξ-function cannot be linear 

over its entire range.  It must level off in the innermost regions and in the outermost regions 

where it merges into intergalactic space. 

 

 

Although the data for both disk galaxies and galaxy clusters show a strong linear relationship, the 

logarithm of the ξ-function cannot stay linear over its entire range.  Our expected behaviour is 

illustrated in Figure 6.  The log function has an obvious discontinuity in the central regions as the 

distance shrinks to zero and the log function goes to infinity.  Therefore we suggest the ξ-function 

must level off to a fixed value at the centre. 

At large distances both galaxies and clusters end and we enter into intergalactic space where, 

again, we expect the ξ-function to level off to another fixed value.  For disk galaxies this means we 

expect the rotation curve to return eventually to the standard Keplerian decline where the rotational 

velocity decreases as the inverse square root of the distance 
 

 
 𝒗  ∝   

𝟏

√𝒓
  (25) 
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9 Predicting  the  dynamical  masses 
 

Having established the observed linear behaviour of our weighting function, we are now in a 

position where we can predict the dynamical mass from the observed baryonic mass for both disk 

galaxies and galaxy clusters.  We no longer need any dark matter to explain the discrepancy 

between the baryonic and dynamical masses. 

 

The cumulative dynamical mass at r  is given by equation (9), which can be written as 
 

 
 𝑴dyn(𝒓)  =    

𝟏

𝝃(𝒓)
  ∑ 𝝃(𝒙) 𝜟𝑴bar(𝒙) 

𝒓

𝟎

  (26) 

 

where  𝑴dyn(𝒓)  is the cumulative dynamical mass from the centre to distance r ;  𝝃(𝒓)  is the 

weight at  r  ;  𝜟𝑴bar(𝒙)  is the increment of baryonic mass at  x  ;  𝝃(𝒙)  is the weight at  x .  So if 

we know both the distribution of baryonic mass across the object and the weight  ξ , then we can 

predict the dynamical mass.  We know the baryonic mass from observations, and we know the 

weight from equation (23), providing we know the value of the exponent  α .  Equation (26) enables 

us to start at the centre and work our way outwards, by adding in the incremental contributions of 

the baryonic mass. 

 

It often turns out that the central regions of disk galaxies and galaxies clusters have large 

uncertainties.  This means it is difficult to integrate from the centre outwards; we need a way of 

starting some way out.  We can do this by normalising the data at a selected distance  R.  For this 

point, equation (25) is 
 

 

 𝑴dyn(𝑹)  =    
𝟏

𝝃(𝑹)
  ∑ 𝝃(𝒙) 𝜟𝑴bar(𝒙) 

𝑹

𝟎

  (27) 

 

where  𝑴dyn(𝑹)  is the cumulative dynamical mass from the centre to  R ;  𝝃(𝑹)  is the weight at  R  

. 

We can split the summation in equation (26) into two separate summations; (a) from the centre to 

our normalisation point  R , and (b) from  R  to a point  r  further out.  Using equation (27), we can 

write equation (26) as 
 

 
 𝑴dyn(𝒓)  =    

𝟏

𝝃(𝒓)
  {𝝃(𝑹)𝑴dyn(𝑹) + ∑ 𝝃(𝒙) 𝜟𝑴bar(𝒙) 

𝒓

𝑹

}  (28) 

 

 

The predicted red lines in the bottom right panels of the diagrams for the disk galaxies and galaxy 

clusters were calculated using equation (28), normalising at the third data point out from the centre.  

You can judge for yourselves as to how well you think the predicted fit matches the observations. 

 

We still have not fully predicted the dynamical masses, as we still need to know the exponent,  α , 

of the weighting function in equation (23).  One way to proceed is to normalise the fit at the 20% 

point, and to use the points from 20% to 40% to determine the value of  α .  Although we are not 

predicting the whole distribution of dynamical mass, we are predicting 60% of it, which is a pretty 

substantial amount. 

 



 

 

The observed data show that the exponent,  α , has a restricted range 
 

 −𝟎. 𝟓  >   𝜶  >   −𝟏. 𝟓  (29) 
 

 and clusters around -1.0.  So a good starting guess for the exponent would be 

 α = -1.0. 

 

  



 

 

 

10 Gravitational  acceleration 
 

The dark matter problem is sometimes viewed as a problem with the gravitational acceleration.  In 

all cases the predicted acceleration from the observed baryonic matter is too low and something 

needs to be done to make the acceleration larger.  We take a brief look at the different solutions to 

the dark matter problem and how our weighting function conjecture fits in with these.  We consider 

the simple situation of a central mass, M , and a test particle a distance, r , away.  The masses and 

velocities involved with disk galaxies and galaxy clusters mean that we do not need to consider 

any relativistic effects.  Simple Newtonian gravity should suffice. 

 

Newtonian gravity.  The basic Newtonian acceleration, gN , is given by 
 

 
𝒈𝑵(𝒓)  =   −

𝑮 𝑴

𝒓𝟐
    (30) 

 

 

Dark Matter.  The dark matter problem is solved by the addition of large amounts of dark matter, 

which remains hypothetical and has never been detected in any experiment.  The acceleration is 

given by 
 

 
𝒈(𝒓) =   −

𝑮  (𝑴 + 𝑴𝑫𝑴)

𝒓𝟐
 = 𝒈𝑵(𝒓)  −  

𝑮 𝑴𝑫𝑴

𝒓𝟐
    (31) 

 

where  MDM  is the dark matter that is added to give the required acceleration.  The basic form of 

Newtonian gravity is kept; we still have the inverse square law but the mass is increased by simply 

adding an the extra dark matter component. 

 

Modified Gravity.  The dark matter problem is changed by modifying the law of gravity.  The best 

known example is MOND proposed by Milgrom (Sanders, 2010).  In high acceleration regions 

normal Newtonian gravity applies, as given by equation (30).  In low acceleration regions the 

acceleration is given by 
 

 

𝒈(𝒓)  =  −√
𝑮 𝑴

𝒓𝟐
  𝒂𝟎  =   √𝒈𝑵(𝒓)  √𝒂𝟎  (32) 

 

where  𝒂𝟎  is the limiting acceleration  (~1.2×10-10 m.s-2).  Newton's law of gravity is modified.  It is 

no longer an inverse square law but changes to an inverse linear law. 

 

Weighting function.  For our conjecture the acceleration is given by 
 

 
 𝒈(𝒓) =  −

𝑮

𝒓𝟐
  𝑴 {

𝝃(𝟎)

𝝃(𝒓)
}  =  𝒈𝑵(𝒓)  

𝝃(𝟎)

𝝃(𝒓)
  (33) 

 

where the baryonic mass is multiplied by the ratio of ξ values to give the dynamical mass.  We 

retain the inverse square law but multiply the baryonic mass by a weighting function to give the 

dynamical mass. 

 

The above examples hopefully clarify the differences between the various ways of solving the dark 

matter problem. 

 



 

 

 

11 Gravitational  lensing 
 

Gravitational lensing is often used to support the existence of dark matter.  The usual scenario is 

where the light from a remote galaxy is bent (lensed) by a galaxy cluster that is much closer to us. 

 

General relativity gives the small angle, Δθ,  that a light ray is bent through by a massive object as 

(d'Inverno, 1995) 
 

 
𝜟𝜽 =  

𝟒 𝑮 𝑴

𝑹  𝒄𝟐
 (34) 

 

where M  is the mass of the object;  R  is the impact parameter or distance of closest approach by 

the light ray to the massive object. 

 

For dark matter explanation the mass of the galaxy cluster is simply the sum of the baryonic mass 

and the dark matter mass, leading to 
 

 
𝜟𝜽 =  

𝟒 𝑮 (𝑴bar + 𝑴𝑫𝑴)

𝑹  𝒄𝟐
 (35) 

 

For galaxy clusters the estimate of the dark matter mass is in good agreement with the estimates 

from the virial theorem and the hot X-ray emitting gas. 

 

For our alternative explanation, of a weighting function, the mass is simply the dynamical mass, 

leading to 
 

 
𝜟𝜽 =  

𝟒 𝑮 𝑴dyn 

𝑹  𝒄𝟐
 (36) 

 

Using the dynamical mass in this way is fully consistent with the mass estimates determined by the 

virial theorem and X-ray emitting gas.  So our alternative explanation is just as good as the dark 

matter explanation. 

 

  



 

 

 

12 Discussion 
 

In this paper we have approached the dark matter problem by assuming that there is no dark 

matter and that the observed dynamical masses are a weighted sum of the observed baryonic 

masses.  We simply worked with the observed data and found that there is a simple linear relation 

for the weighting function.  This is essentially an observational result.  The linear relationship is in 

the data; it is not something that we have imposed on the data.  The linear relationship seems to 

play a part in all disk galaxes and all galaxy clusters.  This is a significant result and it cannot be 

ignored. 
 

We postulate the existence of a weighting function with an approximate 1/r dependence.  We add 

in the observed baryonic mass distribution and out pops the observed dynamical mass distribution.  

No dark matter, and no change to Newtonian gravitation.  Just the introduction of a dimensionless 

scale field for our weighting function. 
 

Our predicted dynamical masses are shown as the red curves in the bottom right panels of the 

figures for a few disk galaxies and galaxy clusters.  These predicted red curves are calculated 

using the slope of the weighting function and the observed distribution of the baryonic masses.  All 

the curves shown are excellent fits to the observed dynamical masses, all the way from the 3rd 

innermost data point to the outermost data point of each object. 
 

Our predicted curves are clearly not perfect fits and we should not expect them to be.  Our analysis 

is based on spherical symmetry being a good approximation for galaxy clusters and that for disk 

galaxies we can assume the mass acts as if concentrated at the centre.  These are both 

reasonable assumptions but they are only first approximations.  So, we should not expect perfect 

fits to the observations.  There are also errors in the observations, which we have not taken into 

account.  Nevertheless, we are impressed with the quality of the fits, which compare favourably 

with what dark matter and modified gravity can produce. 
 

It is clear from equation (14) that the rotational velocity at any point of a disk galaxy is partly 

determined by the baryonic mass at that point.  This has the potential to explain "Renzo's Rule" 

(Sancisi, 2003), where features in the matter distribution give rise to features in the rotation curve.  

This is something that it is difficult for a spherical dark matter halo to explain. 
 

Any astronomer or scientist is free to repeat our analysis and check that our linear relationship is a 

real phenomenon.  Any researcher with access to the observations of baryonic and dynamical 

masses can derive our weighting function for themselves by solving equation (15).  The linear 

relationship we obtain is clearly telling us something and clearly needs more detailed scrutiny.  It is 

important to note that there is no need for dark matter to exist and that the observed dynamical 

mass is determined solely by the observed baryonic mass. 
 

Our weighting function is sufficient to explain away dark matter in disk galaxies, galaxy clusters, 

and gravitational lensing.  However, dark matter is invoked in physical cosmology where it is 

needed to explain the acoustic peaks in the cosmic microwave background and the formation of 

structure.  We have not considered these items here, but the introduction of our weighting function 

suggests that changes must be made to the Friedmann-Lemaitre-Robertson-Walker metric (FLRW 

metric), which takes us well outside the scope of this paper.  One obvious aspect is the 

gravitational potential and potential theory; their basis on the baryonic mass must be changed to 

work with the dynamical mass instead.  A separate paper is in preparation that shows how our 

weighting function can explain these additional topics of physical cosmology. 



 

 

Much of the material in this paper has been published in previous papers that came to the problem 

from a different point of view (JoKe 2015 "On the variation of the energy scale: an alternative to 

dark matter";  JoKe 2019 "An analysis of the rotation curves of disk galaxies using the SPARC 

catalogue";  JoKe 2020 "Variation of the energy scale: an alternative to dark matter";  JoKe 2023 

"A linear relationship between the baryonic and dynamical masses of disk galaxies and galaxy 

clusters").  These papers all started from the assumption that the energy scale can vary from 

location to location, and that this variation is described by a scalar field.  In this paper our approach 

is more straightforward and simply suggests the existence of a weighting function that acts on the 

baryonic mass to give the dynamical mass.  These two ways of looking at the dark matter problem 

are essentially the same. 
 

Our weighting function clearly constitutes a scalar field, in that it has a single scalar value at every 

point of space.  As such it should then be amenable to the physics of scalar fields, which then 

takes us into the area of potential theory including items such as Gauss's Theorem and Poisson's 

Equation.  Again, going there is beyond the scope of this paper.  One suggestion as to why the 

weighting function proposed here might actually exist is that the Higgs field (which determines the 

masses of the fundamental particles) is already known to be a scalar field.  Another suggestion is 

that our scalar field may be related to the scalar field that is believed to be responsible for cosmic 

inflation.  If that scalar field did not decay away completely, then perhaps its remnants give rise to 

our scalar field and weighting function. 
 

A number of predictions can be made based on our suggestion that a weighting function exists that 

determines the dynamical mass from the baryonic mass.  These are set out in viXra paper 

2007.0017 ("Variation of the energy scale: an alternative to dark matter") and in "Predictions and 

Tests" (JoKe21, 2019).  Some of these are not particularly helpful, such as the prediction that no 

dark matter particle will ever be detected.  Others are testable.  Perhaps the best testable 

prediction is that the motions of interacting galaxies are determined by the baryonic mass and not 

by the dynamical mass.  This arises because we expect the weighting function to have similar 

values at the centres of all galaxies.  This is the complete opposite of the prediction from both dark 

matter and modified gravity. 

A second testable prediction is that we expect the rotation curves of disk galaxies to show the 

usual Keplerian decline at large distances, as given by equation (25).  So, even those galaxies that 

appear to have a flat rotation curve will eventually move to a Keplerian decline. 
 

So, at the end of the day, what does this all mean?  If non-baryonic dark matter exists, 

independent of normal baryonic matter, then there should be no relationship between the observed 

baryonic and dynamical masses in disk galaxies and galaxy clusters.  But we have shown that 

there is a simple linear relationship that enables us to calculate the dynamical mass from the 

baryonic mass.  We have a reductio ad absurdum argument that forces us to conclude that dark 

matter does not exist, at least neither in disk galaxies nor in galaxy clusters.  In short, there is no 

dark matter.  It also means that Newtonian gravity is intact; it is what should apply in the regimes of 

disk galaxies and galaxy clusters.  We can sigh with relief that we do not have to get involved with 

modifications of the General Theory of Relativity.  In short, Newtonian gravity is safe. 
 

In summary, we started with a guess, uncovered a linear relationship that accounts for the baryonic 

and dynamical masses in disk galaxies and galaxy clusters, and enables us to predict the 

dynamical masses from the baryonic masses.  We do not need to add any extra mass in the form 

of dark matter and we do not need to modify the law of gravity.  Clearly, we have made some 

progress but more work is still to be done. 
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