
1

Optimal fractional PIβ(t)Dα(t) controllers and numerical simulation
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Abstract We model the rotation process of the motor for variable-order fractional control, which
has been active in recent research, and perform numerical simulation of its optimal control and
automatic control process. In this paper, we verify numerical method and error estimation of
variable order fractional linear dynamic system with time-varying coefficients, a variable-order
fractional PID controller design method where the integral of the absolute error with time weight
is minimized is proposed using particle swarm optimization algorithm and demonstrate its
effectiveness through numerical simulation for DC motor speed control. Numerical experiments
show that the performance of the VFPID controller is superior to PID and FPID, especially VFPIDB

(B-type variable order FPID) controller has the best performance. Finally, when the differential
order varies, the subtypes of variable-order fractional derivatives are analyzed for the effects on the
control objective, its effectiveness is newly clarified, and their research and practice is highlighted.

Keywords: Variable-Order fractional PID Control, Variable-Order fractional Dynamic System,
Variable Order fractional calculus, Particle swarm optimization

1. Introduction
In the 1940s, the practical significance of fractional differential operators began to emerge,

revealing the fact that it was effective to use fractional differential operators in mathematically

modeling the mechanical constitutive relations of viscoelastic media.

Since fractional derivatives have non-localities, past dependencies, and so on, unlike classical

derivatives, fractional calculus has features that better model natural phenomena including complex

phenomena in various fields such as materials science, chemistry, physics, biology, economic [36].

One of the main applications of fractional calculus is fractional PID control that has received

considerable attention in its scientific research and industrial applications [1-3].

So far, the results show that in many cases the fractional PID controller outperforms the classical

integer-order PID controller much [4,11].The attractiveness of fractional-order PID controller lies in

their potential to increase control performance and robustness of closed-loop system due to the extra

control parameters available compared to conventional controller [15, 16].

For FPID(often denoted as PIβDα), integral and derivative is replaced by β-order fractional integral

and α-order fractional derivative, respectively, and thus the PIβDα, which contains two additional

parameters, provides additional flexibility in designing controllers of better performance [7].

In particular, fractional-order PID controller is widely used in industrial automation and

manufacturing engineering due to its advantages of high torque per weight, long lifetime, lower noise

and high reliability while controlling motors [8-10].

The authors of [5,6,12] designed a fractional PID controller (FOPID) for speed control of DC motor.

They used particle swarm optimization algorithm (PSO) to optimize FOPID controller parameters and
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showed that it has more flexible and higher robust performance than classical PID.

In [13], the robustness of fractional order controllers with varying load of DC motor is studied and

in [14] a comparative experiment with the results of PID and fuzzy logic controllers is performed to

show the control performance and robustness of parameter tuning method with adaptive network

fuzzy inference system (ANFIS) structure. Recent studies have shown that fractional differential

equations with constant order cannot adequately model some real natural phenomena, such as

complex diffusion occurring in highly fine inhomogeneous or disordered porous media [17-20].

To overcome this limitation, variable order (VO) differential operators have been proposed and

various definitions and subtypes have been formulated [21-23].The generalization from constant

orders to VO operators gives new insight for more accurate modeling of phenomena and

mathematical description of complex systems. In recent years, with the increasing number of

mathematical studies on calculus, differential equations, optimal control, and automatic control with

variable order, these theoretical studies have been applied in various fields such as motor speed

control and considering variable order fractional properties in practice is important and practical

[24-26].Thus, the mathematical properties and approximate calculation methods of VO fractional

operators have been studied and their applications and computational algorithms have been developed

[27- 33]. In particular, in [34, 35], authors propose a VFPID controller design method using variable

order fractional operators and demonstrate its effectiveness.

Since PID controller is part of FPID and FPID controller is part of VFPID, VFPID controller

provides more degrees of freedom and it is more flexible than PID or FPID. Although VFPID

controller offers more degrees of freedom, they have the drawback of increasing the amount of

computation and additional control complexity. In particular, there is no stability criterion for dynamic

system and feedback controllers with VO.

Moreover, although it is always possible to model linear time-varying fractional systems wit

h fixed order in the frequency domain, it is not always possible for linear time-varying fracti

onal systems with variable order. Thus, designing a feedback controller for dynamic systems

with variable order remains an open issue with today's technology.

This paper proposes a new method for designing VFPID controller for control of fractional

time-varying linear dynamic system with variable order. To do this, the Grünwald-Letnikov d

efinition and backward difference approximation are applied to discretization of the variable or

der fractional differential equation. Then, PSO algorithm is used to search the optimal parame

ter of VFPID controller that minimize the integral absolute error (IAE) of the closed-loop sys

tem.

The rest of the paper is organized as follows.

In Section 2, a brief overview of VO fractional operators and subtypes is presented. In Section 3,

the modeling of linear fractional order systems for speed control of DC motors and the identification

method for designing optimal VFPID are described. In this section, the optimization algorithm PSO to

find the discretization method and control parameters for FDEs with VO fractional order operators is

briefly described. In Section 4, the advantages of using subtypes of VFPID in controlling

variable-order fractional linear dynamic system are illustrated for DC motor speed control. Finally, a
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conclusion is drawn

2. Preliminaries

Definition ([1]): x(.):[a, b]→R and α(t) ∈ Cn[a, b]. For all t ∈ [a, b]

(a) The left variable order Fractional Integral (VOFIs) of type A and type B in the sense of

Riemann-Liouville is defined by
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(b) The right variable order Fractional Derivative (VOFDs) of type A and type B in the sense of

Riemann-Liouville is defined by
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(c) The left variable order Fractional Derivative (VOFDs) of type A and type B in the sense of

Caputo is defined by
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(d) The right variable order Fractional Derivative Definition (VOFDs) of type A and type B in the

sense of Grünwald-Letnikov is defined by
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where Nnntn  ,)(1  and in special case, Rt   )( .

3. Design of optimal fractional )()( tt DPI  controller for time-varying fractional dynamic sy

stem with variable order

In this section, we consider the optimal fractional order controller design method for multi-term

time-varying fractional order dynamical systems if the differential order is given as a function.

Since the uniqueness of the solution of multi-term fractional differential equation with variable

order has not yet been studied, we assume the uniqueness of the solution and study the optimal

fractional order controller design method using the Grünwald-Letnikov fractional derivative

approximation formula .The multi-term variable order fractional order linear nonhomogeneous

differential equation with time-varying coefficients is as follows:
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The feedback control signal by )()( 0 tt DPI  control for this dynamic system is as follows:
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The target control signal
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and the control input signal is )()()( tututu bf  , then the dynamic error system for the cl

osed-loop control system of the control object is as follows:
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If [0,T] is divided by uniform mesh, for ti=mh, m=0,...N with 0 =t0<t1<t2<…<tN=T, the d

ynamic error equation is written as the backward finite difference equation of the following

left type A or left type B of (3).

The left A- type backward finite difference equation

Nmkhtekkhtektek

khtetakhte

m

m

k

t

kdm

m

k

t

kimp

m

m

k

t

k

L

i
mi

m

k
m

t

k

mm

mim

,,2,1,0,)()()(

))(()()(

0

)(

0

)(

0

)(

10

)(

0 




















(10)

Or the left type B backward finite difference equation
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By Podlubny's matrix method, we rewrite the upper equation in matrix form as follows.
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Solving the above system of equations(10-13) yields a solution of the Riemann-Liouville se

nse with zero initial conditions and the solution of the Caputo sense is obtained by adding th

e following terms with respect to the initial condition to the solution of the Riemann-Liouvill

e sense with zero initial condition.
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Thus, the solution of the dynamic error equation is expressed as follows:

- For type A
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- For type B
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Theorem[25]. By variable order fractional calculus definitions (2) and (4), the error estimates and

discrete formulas of left variable order fractional derivatives of type A and type B are expressed as

follows:
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Remark1. It can get the approximate solution of variable order fractional nonlinear differen

tial equation with time-varying coefficients by transforming it into a system of nonlinear equa

tion by using the Grünwald-Letnikov definition.

Remark2. It can apply this approximate calculation method not only for the dynamical system of

the left Caputo (Riemann-Liouville) sense but also the right Caputo (Riemann-Liouville) sense

It can be seen that the fractional
DPI controller requires not only three parameters Kp, Ki, Kd,

but also the real parameters  , of integral and differential operators.

In addition, if  , are given by the functions )(,)( tt  , in other words, if
gtct feetbeat   )(,)(  , constants gfecba ,,,,, must also be added as parameters.

Fig.1 shows the flexibility of VFPID control and the necessity of variable order fractional
calculus.
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Fig1. permissible domain of differential order

Next, we take the integral of time-weighted absolute error (ITAE) as the objective function.

nRudtutetuJ  


,),()(
0

(19)

To adjust the VFPID controller by the objective function means solving a system of nonlinear

equation. Thus, nine free parameters can be identified optimally in a search space by using PSO.

Particle swarm optimization (PSO) algorithm is as follows:

Step1. Initialize a swarm of particles with random position, velocity and acceleration.

Step2. Evaluate the fitness of each particle.

Step3. Compare the individual fitness of each particle with its previous pbest (a particle with the

best position). If the fitness is better, update the fitness to pbest.

Step4. Compare the individual fitness of each particle with its previous gbest (the best particle of

its previous swarm), if the fitness is better, update the fitness to gbest.

Step5. Update the velocity and position of each particle.

Step6. Return to step 2 and repeat until stopping condition is satisfied.

4. Numerical simulation analysis of )()( tt DPI  controller for DC motor speed control

In this section, the performance evaluation of fractional order controllers is considered through

fractional order PID controller design for speed control of armature controlled DC motor.

Fig.2. Schematic of armature controlled DC motor

The DC motor operating variables and physical constants used in [4] are used in our simul

ation for performance comparison.
Then, affm iiKK1T  , where k1 is a constant. In the armature controlled DC motor, the

excitation current is kept constant. Then, aTm iKT , where KT is the motor torque constant.

The differential equation and moment equation of armature circuit are as follows:

aTmaba

a iKT
dt

d
B

dt

d
JeeiR

dt

id
L 


2

2

,0
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Table1. Motor operating variables and constants [4].

The motor rotation equation by controlling armature voltage is ordered as follows:

aTTb eKKKRB
dt

d
RJBL

dt
 

)()(
d

LJ
2

2

(20)

The existence of the solution is guaranteed and numerical simulation calculations can be performed

for various PID control with different orders using the definitions of Grünwald-Letnikov derivative

(type A, B). In the simulation, let the variable order fractional functions of the controller and

coefficients have the following forms:

0,,),exp()(,0,0,1),exp()(0  gfdgtfdtcbactbat  (21)

0.1060255)(,0.08190476)(,10*9.0909)(,0)(,1)(,2)( 21
-4

21  tatatattt 
The upper limit of time for optimization is t=5s and the step size of discretization is h=0.1s.

Optimization is tested for dynamic systems of type A or type B and PID, FPID, VFPIDA (VFPID by

A-type variable order fractional operators) and VFPIDB controllers (VFPID by B-type variable order

fractional operators).

The upper and lower bounds of the parameters for optimization are

kp, kd, ]2,0[ik , ]2,0[a , ]1,0[b , ]0100,0[c , ]2,0[d , ]1,0[f , ]0100,0[g
In the PSO algorithm, the number of particles is set to 40N and the maximum number

of iterations is 02max I .

Table 2 shows the control parameters and performances of non-optimization according to th

e alternative FPID coefficients of [4], and table 3 shows the optimal parameter identification

values and control performances of PID, FPID, VFPID controllers.

Fig. 3 shows the transient process for error tracking of the controllers when initial conditio

NO Symbol Unit Description Symbol Unit Value Description

1 R  Armature Resistance P HP 5 Rated Power
2 L H Inductance of armature winding V V 240 Rated Armature Voltage

3 ai A Armature current aR  2.518 Armature Resistance

4 fi A Field current aL H 0.028 Armature Inductance

5 ae V applied armature voltage fR  281.3 Field Resistance

6 be V back EMF fL H 156 Field Inductance

7 mT Nm torque developed by motor bK 0.0924 Back EMF constant

8  Rad angular displacement of motor shaft TK 0.0924 Motor constant

9  rad/
sec

angular speed of motor shaft B
Nm*s/

rad
0.0005

Friction coefficient of
motor

10 J Kg-m2
equivalent moment of inertia of
motor and load referred to motor

shaft
J Kg-m2 0.003

Moment of inertia of
motor

11 B
Nm*s/r

ad

equivalent friction coefficient of
motor and load referred to motor

shaft
v RPM 1750 Rated Speed

12 fV V 300 Rated Field Voltage
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ns are 1.0 -)0( e , 100.0)0( e .

Numerical simulation results show comparison between the PID, FPID and VFPID controlle

rs where parameters are optimized with the fractional controllers where parameters are not opt

imized.

In the previous works without optimization (Kp= 0.05, Kd= 0.0525, Ki= 0.98) the control

performance was much lower than the integer-order PID controller in our case (optimal parameter

identification) in spite of the fractional controller, as seen in Fig. 3. Moreover, in partial cases when

the fractional orders are a real number greater than 1.3, instability was observed.

We can see that FPID is better than PID and VFPID is better than FPID in their performances, and

affirm VFPID to be of the best performance, especially VFPIDB is very good.

Fig.3. Comparison of Transient curves of Different Controllers

Table2. Performance indexes and FPID control characteristics ((Kp=0.05, Kd=0.0525, Ki=0.98;

non-optimization case)

Index β Α ITAE
peak
time
(s)

settling time
(s)

Overshoo
t (%)

Color

FPID1 1.1 0.5 0.6520982093 0.8 4.673 4.244 pink
FPID2 0.7 1.5 1.2179365150 1.0 3.865 7.119 purple
FPID3 1.1 1.2 2.6134138604 1.1 5이 상 7.395 blue
FPID4 0.9 0.5 0.2916051309 0.7 2.483 3.309 orange

Table3. Performance indexes and control characteristics by our method ( 1)(1 t ; optimization

case)

Controller ITAE Kp Ki Kd a B c d f g
Overshoot

(%)
Peak
time(s)

settling
time (s)

Color

PID 0.181 2.0 0.94 0.1 2.091 0.697 1.869 black

FPID 0.005 0.1 2.0 0.1 0.132 0.1 0 0 0.289
pale

green

VFPID
VFPIDA 0.004 1.5 2.0 2.0 0.1 0.1 590.5 0.1 0.1 256.4 0 0 0.236

Paint
orange

VFPIDB 0.001 0.1 0.1 1.0 1.0 0.972253.9 0.1 0.1 470.5 0 0 0.198 pink

Next, assuming that it is affected by strong external electromagnetic fields or rotates in a fluid field,
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the motor rotation equation by controlling the armature voltage can be modeled as the following

fractional order dynamic equation:

aTTb eKKKRBDRJBL
dt

  
)()(

d
LJ 5.1

02

2

(22)

Set 5.1)(1 t and the other parameters to be set as above and numerical simulation are performed.

Numerical experimental results of the obtained optimal parameters and performance indexes are

shown in Fig. 4 and Table 4.

The error transient curves of the various controllers (PID, FPID, VFPIDA, and VFPIDB) are shown in

Fig. 4, and Table 4 shows the optimized parameter values and performance indexes by PSO

algorithm.

It can be seen that FPID controller outperforms PID controller and VFPID controller is better than

FPID controller, especially VFPIDB controller has the best control performance than other types of

controllers.

Fig.4. Comparative experiments of different controllers for fractional dynamic system
( 1.5)(1 t )

Table4. Performance indexes and control characteristics of different controllers ( 1.5)(1 t )

Controller ITAE Kp Ki Kd a b c d f g
Overshoot

(%)
Peak
time(s)

settling
time (s)

Color

PID 0.32 2.0 1.23 0.1 3.726 0.71 1.899 Yellow
FPID 0.016 0.89 2.0 1.34 0.11 0.1 0.364 0.45 0.810 Pink

VFPID
VFPIDA 0.011 2.0 2.0 2.0 0.1 0.1 1.39 0.1 0.1 3.35 0.255 0.39 0.689 Blue

VFPIDB 0.001 0.2 2.0 1.18 0.93 0.99 589.1 0.1 0.8 81.5 0 0.3 0.3 Red

5.Conclusion
In this paper, in order to investigate the relationship and validity of variations of the variable-order

fractional Operator, we proposed a numerical method of variable-order linear fractional dynamic

system using the approximate calculation formulas of the variable-order fractional calculus operators

and introduced error estimation.

Based on this, a variable-order fractional PID controller design method for fractional dynamic

system was proposed using particle swarm optimization algorithm and applied to DC motor speed
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control to perform performance evaluation.

Finally, numerical experiments have shown that the VFPID controller is superior to PID controller

and FPID controller, especially the VFPIDB controller has the best performance.

Discussion

Since different types of variation definitions are proposed for variable order fractional calculus, the

correlation of variations and control characteristics in the frequency domain as well as solution

properties of variable order fractional differential equations should be studied.

It is also important to determine the analog circuits, hardware implementation and efficiency of

controllers according to variations.

It is noteworthy that the performance of VFPIDB is particularly superior.
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