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Abstract. We study the distribution of superprimes, a subsequence of prime

numbers with prime indices, mod 4. Rather unexpectedly, this subsequence
exhibits a reverse Chebyshev bias: terms of the form 4k+ 1 are more common

than those of the form 4k+ 3, whereas the opposite is the case in the sequence

of all primes. The effect, while initially weak and easy to overlook, tends to
be several times larger than the Chebyshev bias for all primes for samples of

comparable size, at least, by one simple measure. By two other measures, it can

be seen as fairly strong; by the same measures the ordinary Chebyshev effect
is very strong. Both of these measures also imply that the reverse Chebyshev

bias for superprimes is more volatile than the ordinary Chebyshev bias.

1. Introduction

Superprimes are prime numbers whose indices are prime too. For this reason,
they are also sometimes referred to as the prime indexed primes (or PIPs).

Even if perhaps somewhat esoteric, this subsequence of primes has attracted a
good deal of research attention spanning decades as evidenced by this sample of
the literature dedicated to this subject and its variations, including higher order
analogues [1, 2, 3, 4, 5, 6, 7, 8]. For instance, one of the earliest papers on it to be
found in the literature [8], has proved that every integer greater than 96 may be
represented as a sum of distinct superprimes.

In particular, the sequence has been shown to form a small set [6], a distinction
it shares with, for instance, the sequence of twin primes, the latter being the primes
that differ only by 2, the smallest such difference systematically possible for primes.
However, as can easily be seen from the list of the first ten superprimes - 3, 5,
11, 17, 31, 41, 59, 67, 83, 109 - no two consecutive superprimes, except 3 and 5,
corresponding to indices 2 and 3, form a pair of primes for they are always separated
by more than 2.

The issue of the small set is worth emphasizing for if this clearly infinite sub-
sequence of primes forms such a set - which, by the set very definition means the
sum of reciprocals of its terms is finite - then this suggest that the subsequence of
twin primes can also be infinite. This has been conjectured for quite some time
now - it is known as the twin prime conjecture and dates back at least to the mid
19th century [9] - but, despite considerable advances towards the proof that have
been made recently [10], it remains an open problem, one of the most important
unsolved problems of contemporary number theory.
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In this paper, we present experimental evidence that superprimes are more likely
to be of the form 4k+1 than of the alternative form 4k+3, which is quite unexpected
for the generic primes follow the opposite pattern known as the Chebyshev bias (or
effect).

This phenomenon, named after Pafnuty Lvovich Chebyshev, a founding father
of Russian mathematics, who discovered it in the mid 19th century, has been re-
searched rather extensively ever since (see, e.g., [11, 12, 13]) both with the methods
of experimental mathematics and of analytical number theory.

A branch of the latter, known as comparative prime number theory [14, 15],
defined as the study of the discrepancies in distributions of primes in different
residue classes, is, in large measure, devoted to the study of this effect in its various
manifestations, which is to say, that apart from the standard Chebyshev effect, in
which one observes primes of the form 4k+3 more often than of the other admissible
form, there is also the 6k + 5 versus 6k + 1 effect, perhaps less familiar, but also
considerably investigated, as well as effects of this kind in other congruence classes,
also studied in the literature, even if to a lesser degree.

What started as a seemingly inconsequential observation by Chebyshev commu-
nicated by him in a letter to Fuss in 1853 has become a pretty mainstream part
of modern number theory connected to the Generalized Riemann Hypothesis [16]
first also proposed in the 19th century.

To the best of our knowledge, the effect we report on here has not been previously
discussed in the literature. This may, in no small part, be due to the fact that it
cannot be noticed for the smallest of samples that make sense statistically, say,
containing at least 100 data points, as the data presented next shows. But it does
reassert itself for larger samples quite decisively by some simple measures we used
to detect it, the measures that can also detect the Chebyshev bias for all primes.

2. Data and Analysis

This section presents and explains the data from the computer experiments we
conducted that show that superprimes exhibit a clear reverse Chebyshev bias. To
obtain this data we employed Wolfram Mathematica [21] and verified it with the
help of PARI/GP [22].

However, for the sake of completeness and comparison, what follows first is a
table demonstrating the ordinary Chebyshev bias, in which prime numbers of the
form 4k + 3 are slightly more common than those of the form 4k + 1.

Exp #P(4k+3) #P(4k+1) Diff Pct Diff
2 52 47 5 5.05051
3 504 495 9 0.90090
4 5015 4984 31 0.31003
5 50050 49949 101 0.10100
6 500201 499798 403 0.04030
7 5000547 4999452 1095 0.01095
8 50001251 49998748 2503 0.00250
9 500003168 499996831 6337 0.00063
10 5000014372 4999985627 28745 0.00029

Table 1. Data to illustrate the Chebyshev bias.
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The table does this for the ranges containing from 102 up to 1010 first primes, the
range exponent placed in its leftmost column, labeled Exp. The next two columns,
labeled #P(4k+3) and #P(4k+1), contain the numbers of primes of the form
4k + 3 and 4k + 1, respectively, in the ranges, samples, whose size is specified in
the first column.

Then we have columns labeled Diff and Pct Diff. The first of them informs
about the differences between the numbers in the same rows of columns 2 and 3.
This can be considered an absolute measure of the strength of the Chebyshev bias.
The second one expresses these differences in relative (percentage) terms, i.e., it is
the ratio (expressed as a percent) of the number in the next-to-last column to the
total number of primes in both residue classes, which is 10k−1, k being the number
in the first column; −1 is due to 2, the first prime, not belonging to either of the
congruence classes under consideration.

As the 4th column in the table above shows, the primes equal 3 mod 4 are indeed
more common than the primes in the complementary residue class and this happens
over a number of expanding ranges. It is thus systematic. Had the numbers in this
column fluctuated between positive and negative values, one would not be able to
ascertain a bias. But that’s not the case, hence the Chebyshev observation, drawn
from a much smaller sample of primes, appears to be correct.

Let us also note, as evidenced by the last two columns of Table 1, that the
effect in question gradually, yet rather rapidly, decreases in strength when measured
in relative terms, even if at the same time the strength absolute measure keeps
increasing.

The next table contains the data for the superprimes (SP) juxtaposed against
the data for ordinary primes (OP).

Exp #OP(4k+3) #SP(4k+1) OP Dev SP Dev Rel Dev
2 52 49 2 -1 0.5
3 504 506 4 6 1.5
4 5015 5077 15 77 5.13
5 50050 50197 50 197 3.94
6 500201 500957 201 957 4.76
7 5000547 5000791 547 791 1.45
8 50001251 50008450 1251 8450 6.75
9 500003168 500018392 3168 18392 5.81

Table 2. Data for the Chebyshev bias in primes and superprimes.

Its first column refers both to the regular Chebyshev effect (OP) and the Cheby-
shev effect for superprimes (SP). In the former case, it means the same as the
corresponding column in Table 1: the sample size exponent k of the first 10k − 1
primes. In the latter, it means the sample size exponent k of the first 10k super-
primes. Clearly, these sizes are very comparable, but the numbers they contain are
not necessarily the same.

The second column, labeled #OP(4k+3), contains the number of ordinary
primes of the form 4k + 3, while the third column, labeled #SP(4k+1), contains
the number of superprimes of the form 4k+1, for the sample sizes specified in column
1. The next two columns, labelled OP Dev and SP Dev, show the deviation from
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the expected values assumed to be half the sample size. This is strictly correct only
for the superprimes, yet for the primes, this assumption improves with the sample
size and for most of the samples studied here, it is more than good enough.

Finally, the column labeled Rel Dev shows the absolute ratio of SP Dev to OP
Dev. This last column indicates that the reverse Chebyshev bias in the sequence of
superprimes is stronger than the Chebyshev bias among all primes, for some ranges
(4 out of 8) even about 5 times stronger. Of course, that does not mean that it will
not start dissipating at some point, perhaps even at the very next range containing
1010 superprimes that we could not explore here due to computational limitations1.
It may even eventually reverse for larger prime indices, becoming similar to the
ordinary Chebyshev bias, though perhaps differing in strength.

It is, however, pretty surprising that it is both so strong and quite persistent as
well. Even if it does not register at all in the smallest of ranges we investigated: the
deviation of -1 means practically a wash and can be expected due to fluctuations.
Such fluctuations can be stronger than in the Chebyshev effect for all primes as the
effect under consideration is stronger too. Moreover, the smaller the sample, the
greater the impact of fluctuations can be.

That the fluctuations here are indeed more pronounced than in the ordinary
Chebyshev bias can be seen from the charts we show below after first introducing
another simple way to examine the strength of both effects.

Let us then present one more, very elementary, measure to demonstrate that the
effect under consideration is genuine and also fairly strong. We essentially use it
to explicate certain differences between these two effects; the cumulative deviation
measure that we used to discover the reverse effect (Table 2) is more fundamental.

It is a frequency measure. Consider 100 different cells each containing 106 su-
perprimes. For simplicity, let us assume they all come from the range containing
the first 108 superprimes, which also means that they are contiguous, and not to-
tally (pseudo)random, as they might be too. Randomizing them would most likely
produce a different outcome due to lost correlations.

How many of them contain superprimes equal 1 mod 4 in excess of 500000?
Answering this question quantitatively gives us some measure of the effect strength,
for the more of them do so, the stronger the effect.

We can do the same exercise for the Chebyshev effect for all primes for the first
108 primes with cells of the same size, but this time considering primes equal 3 mod
4. We can then compare these numbers to see how these effects stack up against
one another.

It turns out that for the Chebyshev effect as many as 60 out of 100 cells have
an excess of primes of the form 4k + 3 compared to the expected value of 500000.
That’s 60%. What is the number for the effect we are really after here? It is fairly
close: 55%.

For practical purposes, it seems reasonable to assume that an effect genuinely
exists if at least 52% of the cells in the procedure described above favor it. That’s
a 4 point spread between those in favor and those against it. If this spread is 3
times greater, it makes sense to call the effect strong, and when it is 5 times this
(rather high) threshold value, it seems warranted to call it very strong.

1On a typical home computer, it may take about 20 times longer to compute the number of
superprimes of the form 4k + 1 among the first 106 such primes that follow right after the first

109 superprimes than it does so for the very first 106 superprimes.
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By these standards, the Chebyshev effect for all primes, with the spread in
question at 20 is very strong2, while the reverse Chebyshev bias for superprimes,
with the spread at 10, can be considered fairly strong.

This simple approach is illustrated by histograms and graphs for the Chebyshev
bias and its reverse version under discussion that follow next (figures 1 through 4).

Figure 1. Chebyshev bias for primes.

Figure 2. Reverse Chebyshev bias for superprimes.

These histograms clearly demonstrate that the Chebyshev bias for primes is
distinctly sharper while at the same time much less volatile. Out of the 100 cells
only one has an excess over 500, while such deviations from the expected value are
much more common in the case of superprimes. They occur in both directions,
with several exceeding even 1000 in absolute terms. The picture we get here is that
the reverse Chebyshev bias for superprimes features more, and even quite extreme,
swings. In comparison, the ordinary Chebyshev bias is much quieter.

2In the chosen range of the first 108 primes, at least. In other ranges, with other cell sizes,
and especially with randomization, things may look different.
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This notable difference in the characters of these two effects - one quiet, the
other volatile - can perhaps be even better appreciated through the graphs below.

Figure 3. Chebyshev bias for primes.

Figure 4. Reverse Chebyshev bias for superprimes.

The information that the figures above provide allows us to better understand
two discrepancies in Table 2. One we already mentioned above: the negative devia-
tion in the smallest sample of superprimes (column 5 of the said table). We already
indicated that this could be due to fluctuations, and these figures, that reveal how
wild such fluctuations can be, confirm our hypothesis. But there is another dis-
crepancy in the very same column: it is between samples with exponents 6 and 7.
In the latter case the deviation is smaller than in the former, unlike in the case of
the regular Chebyshev bias where such deviations steadily grow. This too can be
attributed to the wild fluctuations under discussion.
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To get still better an idea about the effect studied here, another way of looking
at it, from the point of view of a race between two groups of numbers (competing
residue classes) [13], is entertained below, culminating in Table 3. It provides yet
another visualization of this effect, and, in particular, the fluctuations in question.

This is accomplished with the help of three graphs, each showing the difference
- let us denote it by ∆SP - between the number of superprimes equal 1 mod 4,
π(n, 1, 4), and equal 3 mod 4, π(n, 3, 4), as a function of the current prime index
n - the prime with this index, p(n), serves as an index for the n-th superprime,
p(p(n)).

Hence, ∆SP (n) = π(n, 1, 4)− π(n, 3, 4), and on the charts below it is measured
along the vertical axis, with n running along the horizontal one from 1 to 10k,
where k = 3, 4, 5.

Figure 5. ∆SP (n) with n from 1 to 1000.

Note that, as already alluded to before, initially, up to about n = 100, ∆(n) has
no intention to get into the positive territory, but when it does so, it does so with
aplomb, its maximum in this territory reaching 30, while it never got below 10 in
the negative territory.

The next two pictures show that once it gets into the positive territory, it tends
to stay there, the effect that is quite noticeable. One measure of that is how often
it touches the horizontal axis: only 105 times up to n = 105, the last time being
for n = 6138. There are no further touchings of the horizontal axis up to, at least,
n = 106.

For comparison, there are 284 such touchings for the Chebyshev bias for the first
106 primes, although most of them initially are not followed by negative values of
its ∆P (n), understood here as π(n, 3, 4) − π(n, 1, 4), that stays non-negative until
n = 2946.

However, in the index range discussed, there are 1196 instances of negative values
of ∆SP (n) for the reverse effect of superprimes, which should be contrasted with
1940 such instances for the ∆P (n) in the regular Chebyshev effect.

Thus, even though the Chebyshev effect for primes is initially positive in ∆P (n)
for nearly its first three thousands values, it experiences the negative values more
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often compared to the reverse Chebyshev effect for superprimes in this particular
sample (range). In the other ranges (see Table 3 below), the ordinary Chebyshev
effect shows a decisive strength, but the reverse effect for superprimes is fairly
strong too, save for the smallest of the samples investigated.

Figure 6 shows that the height of positive peaks easily exceeds the depth of
negative valleys. In fact, there are no new such valleys in Figure 7, that is, beyond
those already in the previous two.

Figure 6. ∆SP with n from 1 to 10000.

Figure 7. ∆SP with n from 1 to 100000.

Note also that ∆SP (10
k) (k = 3, 4, 5) - the values of ∆SP (n) at the right hand

edges of these three charts - is twice the value in the next-to-last column of Table
2 for range exponents equal k.
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It seems quite in order to compare the above charts illustrating the reverse
Chebyshev effect for superprimes with at least one analogous for the regular Cheby-
shev effect for primes. We will now do this for the primes p(n) up to n = 105, which
in the index range corresponds to the last chart for the superprimes.

Figure 8. ∆P (n) with n from 1 to 100000.

To continue our analysis in greater detail, let us introduce new symbols: #∆+
a

and #∆−
a , where a ∈ {P, SP}. The plus/minus signs refer to the positive/negative

counts of respective ∆’s. For instance, #∆+
SP is the number of instances for which

∆SP attains positive values in a given range.
Table 3 below collects in columns 2-4 the data for #∆+

SP , #∆−
SP , and the ratio

(Ratio SP) of the former to Total. In columns 5-7, it collects the data for #∆+
P ,

#∆−
P , and the ratio (Ratio P) of the former to Total. Total is the sample size, i.e.,

10k or 10k − 1, the first value applicable to the superprimes, the other to primes,
where k is the range exponent (Exp). The ratios are expressed as percentages and
rounded off to four digits.

Exp #∆+
SP #∆−

SP Ratio SP #∆+
P #∆−

P Ratio P
2 0 97 0.00 95 0 95.96
3 874 116 87.40 995 0 99.60
4 8699 1196 86.99 9988 1 99.89
5 98699 1196 98.70 99649 239 99.65
6 998699 1196 99.87 997775 1940 99.78
7 9821043 177669 98.21 9997775 1940 99.98
8 93711972 6284497 93.71 99991536 7804 99.99

Table 3. Races between residue classes: superprimes and primes.

It is these ratios that are crucial here for they demonstrate both the greater
smoothness of the Chebyshev effect for the primes (lesser volatility - staying steady
about 99% in most ranges investigated) as well as its greater strength (only in the
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case of k = 6, the superprime Chebyshev effect is stronger) compared to the reverse
effect for the superprimes, confirming the previous observations made using other
statistical measures.

For the sake of completeness, let us also include here a sample PARI/GP code
that can be used to obtain the data for the tables shown above.

What follows first is the code for the core data presented in Table 2. The code
will print out a range exponent followed by a comma, and then followed by the
number of superprimes equal 1 mod 4 in the range.

for(k=2, 9, c=1; a=2; c1=0; while(c<prime(10^k), a=nextprime(a+1);

c++; a%4==1&&isprime(c)&&c1++); print(); print1(k, ", ", c1, ", "))

With this code, using a typical home computing power, one should expect to
invest several tens of hours to get the data for the biggest range of superprimes we
have investigated here.

The following code will produce all the columns of Table 1 separated by commas.

for(k=2, 10, c=0; forprime(n=3, prime(10^k), n%4==3&&c++); print();

print1(k, ", ", c, ", ", 10^k-c-1, ", ", 2*c+1-10^k, ", ");

printf("%.5f", 100*((2*c+1-10^k)/(10^k-1))))

While this code is incomparably faster, on a relatively modest home computer
it may still take several hours to get all the nine rows of this table.

The two pieces of code that follow next will produce the data for Table 3. The
first piece computes the data for columns 1-4. The output consists of four columns,
separated by commas, the first containing the values of the range exponent.

for(k=2, 8, c=1; a=2; c1=0; c3=0; cp=0; cn=0;

while(c<prime(10^k), a=nextprime(a+1); c++; if(isprime(c),

if(a%4==1, c1++, c3++); c1>c3&&cp++; c3>c1&&cn++)); print();

print1(k, ", ", cp, ", " cn, ", "); printf("%5.2f", 100*cp/10^k))

The second piece computes the data for columns 5-7 of Table 3. The output
consists of four columns, separated by commas. The first of them also contains the
values of the range exponent, but it is the remaining columns that we actually need
for the table.

for(k=2, 8, c=1; a=2; c1=0; c3=0; cp=0; cn=0;

forprime(n=3, prime(10^k), if(n%4==3, c3++, c1++); c3>c1&&cp++;

c1>c3&&cn++); print(); print1(k, ", ", cp, ", " cn, ", ");

printf("%5.2f", 100*cp/(10^k-1)))

3. Conclusion

The investigation of the biases in the distribution of primes has a fairly long
tradition dating back to the mid 19th century when the observation by Chebyshev
brought to the realization of mathematicians that prime numbers are not really as
random as they may appear or are assumed to be for various theoretical ends [15]:
those of the form 4k+3 are slightly more common (or occur more frequently) and,
what’s important, systematically so, than those of the complementary form, 4k+1,
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indicating a deviation from a naively understood random distribution predicated
on the absence of such systematic discrepancies.

Nowadays, if only in part, because of this and related bias phenomena, one thinks
of the distribution of primes as pseudorandom rather than random, as emphasized,
among others, by T. Tao [18]. Pseudorandom sequences are sequences that are
not actually random but behave as if they were, exhibiting many properties of
randomness, even though they were produced by deterministic algorithms.

Thanks to the modern computer technology, research on the Chebyshev bias
and related phenomena has entered a new and exciting era [11, 13]. Without this
technology and specialized mathematical software that comes with it, like Wolfram
Mathematica [21] or PARI/GP [22], this paper, that revealed a reverse Chebyshev
bias in the distribution of superprimes, would not be possible.

Using these software tools we were able to uncover a new effect in the distribution
of some fairly popular subsequence of primes, prime indexed primes (superprimes),
and to demonstrate its existence through data and visualization, while employing
rather simple statistical methods. We contrasted this effect with the Chebyshev
bias for generic primes, finding it fairly strong, and also more volatile than the
latter, even if initially hard to register for its starts in earnest for prime indices
exceeding 100.

An interesting example of the research related to ours, and also pretty recent, is
a work by Lemke Oliver and Soundararajan [17], who discovered an effect similar
to the Chebyshev bias, in that it also deals with distributions of prime numbers
viewed through the prism of a congruence class.

More specifically, this effect concerns the last digits of primes that appear to
exhibit an anti-sameness bias of sorts. Namely, it turns out that prime numbers
with the same last digit repel one another, i.e., they are less likely to appear next
to one another in the sequence of primes than one would expect it.

The Chebyshev and related effects in the distribution of prime numbers are
fairly weak in the sense that whereas the deviation from the expected values keeps
increasing in absolute terms, it decreases in relative terms, as pointed out in the
previous section.

Not all bias phenomena in primes are like that, though. In particular, as dis-
covered by us recently [19, 20] some can be both quite noticeable and free of the
weakness mentioned. Preliminary research on this novel kind of effect in the se-
quence of superprimes indicates, rather unsurprisingly, that this is also the case
there.

When it comes to the effect this paper is about, more research, with more pow-
erful computing resources than we had at our disposal, is needed to get a more
thorough understanding of this rather unexpected phenomenon, especially regard-
ing its further behavior. Does the effect continue beyond the ranges of superprimes
we have investigated here, or does it begin to falter?

This paper is only a starting point in investigating of this phenomenon, and since
it is purely experimental in its approach, an analytical approach is certainly very
needed and welcome here.

Acknowledgements. The author is grateful to the developers of Wolfram Math-
ematica [21] and PARI/GP [22] whose software was indispensable to this research.
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