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Abstract

Using the sum of the derivatives of an integer polynomial with Euler’s

formula we prove that π is irrational. We show how the technique can be

used to show e and π’s transcendence.

Proof

Proofs of the irrationality of π are numerous [1], but none are as easy and direct

as the following.

Theorem 1. π is irrational.

Proof. A simple case generalizes. Suppose f3(x) = x3 and consider the sum of

its derivatives:

F3(x) = x3 + 3x2 + 3!x + 3!.

It follows that F3(0) = 3!. Now consider

F3(0)e
x = 3!

(

1 + x +
x2

2!
+

x3

3!
+

∞
∑

k=4

xk

k!

)

= F3(x) + 3!
∞
∑

k=4

xk

k!

= F3(x) + 3!(ex − s3(x)),

where s3(x) is a partial sum of ex.
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Adding F (0) we have

(ex + 1)F3(0) = F3(0) + F3(x) + 3!(ex − s3(x)). (1)

Now imaging x = πi and applying Euler’s formula, eπi + 1 = 0 makes (1)

0 =
F3(0) + F3(x)

3!
+ (ex − s3(x)),

after dividing by 3!, the multiplicity of the single root of f(x) factorial.

There is no reason to believe that for a general term of any polynomial this

pattern would change. Nor is there any reason that all surviving non-zero coeffi-

cients of Fn(r), r a root of fn(x) would not have factors of the multiplicity of the

root factorial (like this easy case), if the coefficients of fn(x) are integers. Thus

assuming π = p/q, we can use x3(qx − pi)3, for example, and these conditions

are met. So, 0 is an integer plus a something less than 1, a contradiction.

Of course this is a forest only proof. We are definitely not getting into the

weeds, the details. The next two, slightly harder ideas, give credence to our evolv-

ing forest.

The Mean Value Theorem

Another property of F (x) is

F (x)− F ′(x) = (x3 + 3x2 + 3!x + 3!) −
d

dx
(x3 + 3x2 + 3!x + 3!) (2)

= x3 = f(x) (3)

and this is clearly the case for any polynomial, f(x). We also notice the product

formula for derivatives is of interest: (fg)′ = f ′g+g′f . Consider that (exF (x))′ =
exF (x) + F ′(x)ex is close to ex(F (x)−F ′(x)). We need subtraction; −e−xF (x)
does the trick:

(−e−xF (x))′ = e−xF (x) + F ′(x)(−e−x) = e−x(F (x)− F ′(x)). (4)

The mean value theorem can be combined with (4). Let G(x) = −e−xF (x),
then

G(x) − G(0)

(x− 0)
= G′(ξ) = e−ξf(ξ),
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where ξ ∈ (0, x). Translating back,

−e−xF (x) + e0F (0) = xe−ξf(ξ)

and then multiplying by ex gives

−F (x) + exF (0) = xex−ξf(ξ).

This is our pattern: exF (0) = F (x) + xex−ξf(ξ).

Integration

This pattern exF (0) = F (x) + xex−ξf(ξ) might be called Hermite’s Formula.

With it (and other things) he showed e is transcendental and later Lindemann used

it again to show π is transcendental too. We can give the essence of their ideas.

Before going there, here’s another derivation of Hermite’s formula using a definite

integral.

Just integrating
d(−e−xF (x))

dx
= e−xf(x)

gives

∫ x

0

d

dx

(

−e−xF (x)
)

=
∣

∣

x

0

(

−e−xF (x)
)

= −e−xF (x) + F (0)

on the left side and
∫ x

0

e−xf(x) dx

on the right. Multiplying by −ex then gives

F (x)− exF (0) = −ex

∫ x

0

e−xf(x) dx

or

exF (0) = F (x) + ex

∫ x

0

e−xf(x) dx.
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Transcendence

A number is transcendental if it is not the root of an integer polynomial. Naturally,

to show a number is transcendental, we suppose that it is a root of polynomial

and derive a contradiction. We can use Hermite’s polynomial as a starting point.

Consider that πi = r0 and rk, 0 < k ≤ n, are other roots an integer polynomial.

Supposing we made the right Hermite polynomial, we might hope for something

involving

F (0)(er0 + er1 + · · · + ern) = −F (0) + F (r1) + · · · + F (rn) +
n
∑

k=0

εk.

But this isn’t equal to zero. We need a modification that will make this equal to 0
but also yield a way to sum those large capital F values. We know eπi +1 = 0, so

we can say

0 = F (0) ((er0 + 1)(er1 + 1) . . . (ern + 1))

and this will yield sums of F at the various exponents generated. We will have to

modify the small case f used for our capitial F to make the roots equal to these

exponents. Will the resulting polynomial be the requisite integer polynomial or

something close – i.e. with coefficients rationals awaiting a constant multiple to

make them all integers.

That’s π and it seems complicated. Remember

n
∏

k=0

(x− rk) = P0x
n + P1x

n−1 + P2x
n−2 + · · · + Pn (5)

where Pk is the sum of roots multiplied k at a time. You observe this with

(x− 1)(x− 2)(x− 3) = x3 − (1 + 2 + 3)x2 + (1 · 2 + 1 · 3 + 2 · 3)x1 − 1 · 2 · 3.

And we can get these coefficients with Maple, Figure 1.

Figure 1: Maple’s expand command in action.

This example gives some evidence that integer roots generate integer coeffi-

cients; a pretty obvious result. But what about (x−
√

2)(x +
√

2) = x2 − 2? The
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roots are not integers, but the coefficients are. So it isn’t clear whether or not we

can form a polynomial from the roots of an integer polynomial that will for sure

also have integer coefficients. More on this in a separate article. Let’s try an easier

case of transcendence.

Suppose we wanted to prove e is transcendental. As always we assume it isn’t

and attempt to derive a contradiction. Suppose e is a root of p(x)

p(x) = c0x
n + c1x

n−1 + · · · + cn,

where the coefficients are integers. Then

p(e) = c0e
n + · · · + cn = 0.

It seems likely we can form a polynomial f(x) with an F (0) such that

0 = F (0)(c0e
n + · · · + cn) = c0F (n) + · · · + cnF (0) +

n
∑

i=0

εi. (6)

We can read the necessary roots off of (6). They are just the integers 0, . . . , n; the

exponents of e.

Conclusion

This is a forest article. With it students might seek to happily learn what’s needed

to complete our sketches.
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