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Abstract

Using the sum of the derivatives of an integer polynomial with Euler’s
formula we prove that 7 is irrational. We show how the technique can be
used to show e and 7’s transcendence.

Proof

Proofs of the irrationality of 7 are numerous [1], but none are as easy and direct
as the following.

Theorem 1. 7 is irrational.

Proof. A simple case generalizes. Suppose f3(z) = 2 and consider the sum of
its derivatives:
Fy(z) = 2° + 327 + 3!z + 3.

It follows that F3(0) = 3!. Now consider
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where s3(z) is a partial sum of e”.



Adding F'(0) we have
Now imaging # = 77 and applying Euler’s formula, ™ + 1 = 0 makes (1)

_ F3(0) + Fy(a)
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+(e" —s3(2)),
after dividing by 3!, the multiplicity of the single root of f(x) factorial.

There is no reason to believe that for a general term of any polynomial this
pattern would change. Nor is there any reason that all surviving non-zero coeffi-
cients of F,,(r), r aroot of f,,(x) would not have factors of the multiplicity of the
root factorial (like this easy case), if the coefficients of f,,(x) are integers. Thus
assuming ™ = p/q, we can use z°(qz — pi)?, for example, and these conditions
are met. So, 0 is an integer plus a something less than 1, a contradiction. U

Of course this is a forest only proof. We are definitely not getting into the
weeds, the details. The next two, slightly harder ideas, give credence to our evolv-
ing forest.

The Mean Value Theorem

Another property of F'(x) is

d
F(z) — F'(z) = (2* 4+ 32° + 3!z + 3!) — d—(x3 +327 +3lz+3) (2
X
=2’ = f(2) 3)
and this is clearly the case for any polynomial, f(x). We also notice the product
formula for derivatives is of interest: (fg)' = f'g+¢' f. Consider that (e”F(x))' =

e’F(x) 4+ F'(z)e” is close to e*(F'(x) — F'(x)). We need subtraction; —e * F'(x)
does the trick:

(—e " F(2)) = e *F(x) + F'(x)(—e ) = e *(F() — F'(x)). (&)

The mean value theorem can be combined with (4). Let G(z) = —e *F(z),
then

=G'(§) = e *f(9),



where £ € (0, z). Translating back,

—e " F(z) + " F(0) = ze S f(€)
and then multiplying by e* gives

—F(x) + e"F(0) = ze" S f(¢).

This is our pattern: e*F'(0) = F(x) + xe® ¢ f(£).

Integration

This pattern e”F(0) = F(x) + ze® ¢ f(¢) might be called Hermite’s Formula.
With it (and other things) he showed e is transcendental and later Lindemann used
it again to show 7 is transcendental too. We can give the essence of their ideas.
Before going there, here’s another derivation of Hermite’s formula using a definite
integral.
Just integrating
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gives
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on the right. Multiplying by —e” then gives

on the left side and
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Transcendence

A number is transcendental if it is not the root of an integer polynomial. Naturally,
to show a number is transcendental, we suppose that it is a root of polynomial
and derive a contradiction. We can use Hermite’s polynomial as a starting point.
Consider that i = rg and 1, 0 < k& < n, are other roots an integer polynomial.
Supposing we made the right Hermite polynomial, we might hope for something
involving

F(O)(em +emt 4+ eTn) — —F(O) + F(T’l) 4+ -4 F(T’n) + iek'

But this isn’t equal to zero. We need a modification that will make this equal to 0
but also yield a way to sum those large capital F' values. We know e™ + 1 = 0, so
we can say

0=FO) (e +1)(e" +1)...(e™+1))

and this will yield sums of F' at the various exponents generated. We will have to
modify the small case f used for our capitial /' to make the roots equal to these
exponents. Will the resulting polynomial be the requisite integer polynomial or
something close — i.e. with coefficients rationals awaiting a constant multiple to
make them all integers.

That’s 7 and it seems complicated. Remember

n

[[@—r) =Pa"+ P2 + Pa" 2+ + P, (5)
k=0

where P, is the sum of roots multiplied & at a time. You observe this with
(z—D(z—-2)(z-3)=2"-1+2+3)2* +(1-2+1-34+2-3)z' —1-2-3.

And we can get these coefficients with Maple, Figure 1.

> epand((x—1)-(x—2) (x—3)):
Y -6 +11x—6

Figure 1: Maple’s expand command in action.

This example gives some evidence that integer roots generate integer coeffi-
cients; a pretty obvious result. But what about (z — v/2)(z + v/2) = 2% — 2? The
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roots are not integers, but the coefficients are. So it isn’t clear whether or not we
can form a polynomial from the roots of an integer polynomial that will for sure
also have integer coefficients. More on this in a separate article. Let’s try an easier
case of transcendence.

Suppose we wanted to prove e is transcendental. As always we assume it isn’t
and attempt to derive a contradiction. Suppose ¢ is a root of p(z)

p(z) = cox™ + crz™ ™t

_|_ e _|_ Cn,
where the coefficients are integers. Then
ple) = coe” + -+ ¢, = 0.

It seems likely we can form a polynomial f(x) with an F'(0) such that

0=F(0)(coe" + -+ +¢n) =coF(n)+ -+ c, F(0) + Zei. (6)
=0
We can read the necessary roots off of (6). They are just the integers 0, . . . , n; the

exponents of e.

Conclusion

This is a forest article. With it students might seek to happily learn what’s needed
to complete our sketches.
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