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Abstract. In this article we present an algorithm for finding the factors Q of composite 

Fermat numbers. The algorithm finds the Q factors with less tests than required through 

the equation 2n×K+1.  

1. Introduction 

Available factorization tests fail in the case of Fermat numbers. So, the factors Q  of 

Fermat numbers 2
2 1

S

S
F   , S  , are calculated through equation  

2 1
n

Q K   ,                                                                                                                     (1) 

where K  is an odd number and n  is a integer, 2n S  . The algorithm we present in this 

paper finds the factors Q  with less tests than required through equation (1).  

2. The algorithm 

There exists a sequence of odd numbers of the form Q  (see, [3], section 3) for which 

 T Q Q  and  * *
T Q Q  (see [3], section 4). Fermat numbers and their factors (see [1-

5]) belong to this sequence. Starting from this fact, we get an algorithm for calculating 

factors of composite Fermat numbers.  

    Every Fermat number has at least one factor of the form  

2 2
2 1 3 2 2N n n

Q  
                                                                                                    (2) 

in an interval 1 22 ,2N N

N

       and at least one factor of the form  

2 2
2 1 5 2 2M n n

Q l 
                                                                                                     (3) 

in another interval 1 22 ,2M M

M

      .  

Considering that Q  belongs to either the interval N  or M , we get the possible values 

of   and l ,  

1

1

0,1,2,..., 2 1

1,0,1,..., 2 2

N n

M nl

  

 

 

  
.                                                                                                     (4) 

From equations (4) we get the following inequalities,  

1

2

N n

M n

 

 
.                                                                                                                          (5) 
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Changing the value of K  in equation (1) by 2K   the value of Q  changes by 
12nQ  . Changing the value of   by 1   or l  by 1l   in equations (2), (3) the 

value of Q  changes by 
22nQ 

 . Therefore equations (2), (3) give the possible factors 

of a Fermat number with half the number of tests given by equation (1).  

    We give an example.  

Example 1. For 32

5 2 1F    we have 5 2 7n    and from equations (2), (3) we get 

2 7 9

2 7 9

2

2

1 3 2 2

1 5 2 2

N

M

Q

Q l









    

    
.                                                                                                (6) 

From equations (4) we get  

8

8

0,1,2,..., 2 1

1,0,1,..., 2 2

N

Ml

 



 

  
.                                                                                                       (7) 

From inequalities (5) (or from equations (7)) we get 8N   and 9M  . 

For 8N  , 9M  , from equations (6), (7) we get  

10 7 9
2 1 3 2 2Q       ,   

11 7 9
2 1 5 2 2Q l        

and 0  , 1,0l   . The first equation gives 
10 7

2 6411 3 2Q      . The second 

equation for 1l    gives  

 11 7 9
2 1 19211 5 2 2Q         

and for 0l   gives  

11 7
2 14091 5 2Q      .  

641Q   is a factor of the 5F , therefore the second factor of 5F  is given by the second of 

the equations (6). We give values 9,10,11,...M   until we reach 21M   where we find 

6700417Q   in the interval 21 . In each interval  , 9,10,11,..., 20   the number of 

tests is 
82   (see equation (7)). Therefore up to 20 , 9 8 10 8 11 8 20 8 13

2 2 2 2 2 1...   
      

tests are required. For 21M  , after 3298 tests, for  32961,0,1,...,l    we get 
23 7 9

2 3296 67004171 5 2 2Q       . Consequently, 13
1 3298 114892     tests are 

required to calculate 6700417Q  .  

    Finding 7
52347 16700417 2    from equation (1) requires 

52347 1
26173 11489

2


   

tests. If we had done all the tests on set 
21

 , the required number of tests would be 

14
2 1 16383 26173   .  
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    The algorithm has not been fully explored. An investigation concerns the replacement 

of parameters 2
2

n



 , 2

2
n

l

  in equations (2), (3) with 2

2
n x


 

 , 2
2

n y
l

 
 , where x , y  are 

positive integers. We give an example.  

Example 2. To find the 6700417Q   factor of 
5

F  we use the equation  

2 7 14
2 1 5 2 2

M
Q l


                                                                                                         (8) 

instead of the second of equations (6). Considering that Q  belongs to the set M we get 

the following values of l ,  

131,0,1,..., 2 2Ml    .                                                                                                      (9) 

Therefore we have 14M  .  

We give values 14,15,16..M   until we reach 
21

  where we find 6700417Q  . In each 

interval 
 , 14,15,16,..., 20   , 

13
2
 

 tests are required ( see equation (9)). Therefore the 

required tests are 14 13 15 13 16 13 20 13 8
2 2 2 ... 2 2 2 254

   
       . For 21M  , from equation (8) 

we get 
23 7 14

2 1 5 2 2Q l       and from equation (9) we get 1,0,1,..., 254l   . After 105  

tests, for 1,0,1,...,103l    we get 
23 7 14

2 1 5 2 2 103 6700417Q        . Therefore the tests 

required to find 6700417Q   are 254 105 359 26171   .  

    Now let C  be a composite factor of a Fermat number, 1 2
n

C K   . Then C  has a 

factor of the form 
1

2 1
n

Q K    (see, [3] Corollary 3.1). Therefore, for the factorization 

of C , we know the parameter n  in equations (2), (3).  
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