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Abstract: 

The unified theory of the four fundamental forces has been a goal pursued tirelessly by 

physicists. Attempts have been made from various aspects such as quantum field theory, general 

relativity, and string theory, but none have yielded satisfactory results. This article starts with the 

electric field interaction between two charges. By considering the additional effect of positive and 

negative vacuum polarization charge clouds around the particles, the divergence equation of the 

electric field can not only derive the expression of the potential energy of the non-divergent electric 

field at zero distance, but also derive the potential energy expressions of the non-divergent nuclear 

force, short-range weak force, and universal gravity. These four forces are different manifestations of 

the static electric force between charges, and all have a non-zero equilibrium distance. The well-

known Newtonian universal gravity, Coulomb force, and Yukawa nuclear force are all results when 

the action distance is much greater than the equilibrium distance. 
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1、Introduction 

There are four fundamental forces found in nature, namely, universal gravity, electromagnetic 

force, nuclear force, and short-range weak force. According to quantum field theory (QFT), these 

four forces are all exchange forces of spin-integer bosons, and a grand unified field theory including 

the short-range weak force, electromagnetic force, and nuclear force has been established from a 

quantum perspective
 [1-3].

 An ultimate goal of physics is to unify all four forces, including gravity, but 

no one has proposed a convincing method to achieve this goal yet. Some have attempted to describe 

gravity using quantum field theory, but without success. Most physicists believe that novel ideas 

must be proposed to include gravity in the natural quantum field theory
[4,5]

. 

Quantum field theory indirectly describes the different characteristics of the three forces by 

analyzing the amplitude and scattering of colliding particles, rather than directly describing the 

different potential energies of the three forces using mathematical formulas or describing their 

different action laws. In particular, the mathematical expression of the potential energy of the short-

range weak force, unlike the Coulomb electric field force and the Yukawa nuclear force
 [6,7]

, has not 

been obtained yet. Although it can be proven in the theory of electrodynamics that the potential 

energy of the Coulomb electric field force and the Yukawa nuclear force between two charges is 

inversely proportional to the square of the distance between them, there still exists the problem of 

infinite divergence at zero distance, which limits the application range of the potential energy of the 



Coulomb electric field force and the Yukawa nuclear force. This article, based on electrodynamics 

theory
[8-10]

, considers the additional effect of positive and negative vacuum polarization charge 

clouds around the particles, not only to solve the problem of infinite divergence of the potential 

energy of the Coulomb electric field force at zero distance, but also to derive the potential energy 

expressions of the non-divergent nuclear force, short-range weak force, and universal gravity. The 

Lagrangian derived from these potential energy expressions will have broad applications in quantum 

field theory. 

2、Non-divergent electric field force at zero distance 

The infinite result of the Coulomb electric field force at zero distance has always been a 

singularity divergence problem that physicists have been trying to solve. After more than two 

hundred years, no one has proposed a convincing solution. Based on the fact that the electric field 

strength diverges at zero distance, it can be inferred that there are positive and negative vacuum 

polarization charge clouds distributed around each charged particle. By considering the additional 

effect of these vacuum polarization charge clouds on the surrounded charge, the century-old problem 

of infinite divergence in the Coulomb electric field force at zero distance can be solved. The electric 

field strength E generated by the charge Q can be defined by introducing the electric potential φ as  

=E                                                                  (1). 

By substituting it into the divergence equation of the electric field, 

0/  E                                                              (2), 

we can obtain the spherically symmetric electric potential  that the Poisson equation,  
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In the equation, ε is the dielectric constant, ρ is the charge density at the field point, and r is the 

distance from the field point to the charge. 

 For the case of 0  , equation (3) tells us that the potential of the electric fieldQ  excited at the 

field point at a distance r from the charge is 

0/ 4Q r                                                            （4). 

 Placing a charge q at the field point, the potential energy of the electric field interaction between the 

two charges is  

V q                                                                  (5).  

Therefore, the electric field interaction force between the two charges is the Coulomb electric field 

force 

V q  F E                                                           (6),  

where E is the electric field intensity.  



2/ r  =E r                                                         (7) 

Since the electric field intensity is a non-observable quantity, the divergence of the electric field 

intensity at zero distance does not violate physical laws. By substituting it into the Poisson equation 

and Gauss's theorem, it can be proven that there exist positive and negative vacuum polarization 

charge clouds in all uncertain spaces surrounding charged particles. The vacuum polarization charge 

with the opposite charge to the charged particle is concentrated at the origin of the charged particle, 

while the vacuum polarization charge with the same charge as the charged particle is distributed in 

the uncertain space outside the origin of the charged particle.  

The author found that the electric field interaction between the vacuum polarization charge and 

the charged particles is different from the interaction of the polarized charge in the medium. It has 

zero net force on external charges and only exerts an electric field force on the charges it surrounds. 

In the absence of external charges𝑄, the vacuum polarization charge around the charge𝑞 is in a state 

of electrostatic equilibrium and has no effect on the surrounded charge. However, when there are 

external charges𝑄, the charge𝑞 not only experiences the electric field effect caused by the charge𝑄 

but also the additional potential𝜑𝑞  caused by the electric field generated by the vacuum polarization 

charge surrounding the charge𝑞 . Therefore, the total potential𝜑 + 𝜑𝑞 of the charge𝑞due to the 

interaction with the charge𝑄must be proportional to the potential𝜑of the electric field excited by the 

charge𝑄at the charge 𝑞position,  

/q    
                                                             

(8),  

where   is an undetermined function of r . Thus, considering the effect of the vacuum polarization 

charge, the potential energy of the electric field interaction between q  and Q  becomes 

  /qV q q     
                                                    

(9),  

which means the potential is  

/V q                                                              (10).  

Substituting (10) into (3), the potential energy V of the electric field interaction between the two 

charges satisfies the equation  
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(11).  

By making the substitution 1/r x , equation (11) can be written as a standard form of a non-

homogeneous linear second-order differential equation  
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(12).  

Taking 0   as a homogeneous linear second-order differential equation  
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(13),  



the coefficients of the homogeneous linear second-order differential equation can form a derivative 

term  
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(14).  

If we set this derivative term equal to zero, we have  
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(15),  

whereR  is an integration constant. Continuing the translation: 

 

From (15), the undetermined function can be derived as 

/e eRx R r                                                           (16).  

Thus, equation (12) can be written in the form of a constant coefficient second-order differential 

equation  
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The results discussed in the mainstream are for the case of integration constant 0R  , where 1  . 

 

For the case of 0R  , equation (17) can be used to obtain the potential energy of the electric field 

force between the two charges  

/ /

1 2 1 2e e e / eRx Rx R r R rV C x C C r C                                          (18).  

At r R , if it is equivalent to the potential energy of the Coulomb electric field force (5), by 

comparing the two equations, the constant can be determined as  

1 0/ 4C qQ q r   ， 2 0C                                              (19).  

Therefore, the potential energy of the electric field force between the two charges can be written as  

/e R rV q                                                             (20).  

From this, the electric field force between the two charges is obtained as  

/(1 / )e R rV q R r    F E                                               (21).  

This is a non-divergent electric field force at zero distance, which can be referred to as the Xiao’s 

electric field force. At r R , the Xiao’s electric field force can revert back to the Coulomb electric 

field force. 

 

The electric field force and the potential energy of the electric field force between the two 

charges are observable quantities, and they cannot have infinite divergent results under any 

circumstances. The infinite divergence of the Coulomb electric field force at zero distance indicates 

that the mathematical expression of the Coulomb electric field force is incomplete. In order to 



eliminate the infinite divergence of the Coulomb electric field force at zero distance, the integration 

constant R in (21) cannot be zero, and non-zero R implies that there is a minimum value for . One 

result that satisfies the requirement of having a minimum value forR is the relationship between and 

the masses of the interacting charged particlesM andm , given by  

   2 2/ / / /R Mc GM c mc Gm c      

  2/ /c G M m c  
                                                          

(22)  

where  /mM M m   ,  is the reduced Planck constant, c is the speed of light, and  G is the 

Newtonian gravitational constant. It can be easily verified that regardless of the values of M andm ,  

willR  never be less than . 

 

Figure 1 shows the variation curves of the Xiao’s electric field force and the Coulomb electric 

field force between a proton and an electron. It can be seen that the two electric field forces behave 

differently at close distances. 

 

 

 

 

 

Figure 1: Variation curves of the Xiao’s electric field force and the Coulomb electric  

field force between a proton and an electron. 

When  𝑟 → 0, the Xiao’s electric field force tends to zero, while the Coulomb electric field force 

tends to infinity. In addition, the Xiao’s electric field force has an equilibrium distance 𝑟0, which can 

be determined from 𝐹 𝑟0 = 0. The integration constant R is the equilibrium distance of the Xiao’s 

electric field force, i.e., 𝑟0 = 𝑅. When 𝑟 > 𝑅, the electric field force between the two charges is 

attractive for opposite charges and repulsive for like charges. When 𝑟 < 𝑅, the electric field force 

between the two charges is repulsive for opposite charges and attractive for like charges. This is a 

characteristic of the electric field force that the Coulomb electric field force does not possess. 

 

3、The nuclear force generated by the superposition of vacuum polarized 

charge clouds. 

For over half a century, our understanding of the nuclear force between nucleons in the atomic 

nucleus has mainly come from experiments. Although quantum chromodynamics (QCD) can explain 

many nuclear phenomena theoretically, the study of the properties of the nuclear force between 

nucleons is still based on empirical phenomenological theories. It has not yet been directly derived 

from the mathematical expression of the nuclear force between two nucleons in the atomic nucleus 
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by the theory of quantum chromodynamics. In particular, the repulsive force that exists between two 

nucleons at short distances has not been theoretically proven. 

 

The author found that the nuclear force is also related to the positive and negative vacuum 

polarized charge clouds surrounding charged particles. When the interaction distance between two 

charged particles is small enough for the surrounding vacuum polarized charges to overlap, a nuclear 

force is generated between the two chargce, the term𝜌in equation (17) is not zero, but rather given by 

equation   

2

0 e /Rxk V q 
                                                      

（2  3) 

where 𝑘is an undetermined constant. Therefore, equation (17) can be written as equation  
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Solving this equation yields the potential energy of the nuclear force, given by equation  
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where𝑟 = 1/𝑥 and𝑅 = ℏ/𝜇𝑐 . When 𝑟 >> 𝑅, if it is equivalent to the potential energy of the Yukawa 

nuclear force,  

𝑉 = −𝑐ℎ𝑒−𝑘𝑟/𝑟                                                               (26) 

the comparison of the two equations reveals that the constants and are related by equation  

1C c  ,   2 0C                                                        (27)  

At 𝑅 ≠ 0Substituting these two constants into equation (25) yields the potential energy of the nuclear 

force at zero distance without divergence when  

𝑉 = −𝑐ℏ𝑒−𝑘𝑟−𝑅/𝑟/𝑟                                                         (28) 

This leads to the derivation of the divergence-free nuclear force given by equation  

  /

3
1 / e kr R rc

V kr R r
r

      


F r
                                       

(29).  

𝐹 𝑟0 = 0, the nuclear force also has an equilibrium distance𝑟0, which is related to the equilibrium 

distance 𝑅of the electric field force according to equation  

2

0 0 0kr r R                                                            (30)  

When 𝑟 > 𝑟0 , the nuclear force between two charges is attractive for like charges and repulsive for 

opposite charges, which is the opposite of the action of the electric field force. Figure 2 shows the 

variation curves of the Xiao’s nuclear force and the Yukawa nuclear force between two protons, 

which can be calculated using equation (22) to obtain the integral constant 𝑅 = 0.42fmand the 

equilibrium distance of the nuclear force 𝑟0 = 0.3fm[11]
. 

 



 

 

 

 

Fig. 2 Xiao’s nuclear force and Yukawa nuclear force curves between p and q. 

The nuclear force is also a type of electric field force, and the strength of the nuclear force 𝐶1is 

related to the strength of the electric field force𝑒2/4𝜋𝜀0 through a Bose distribution function, as 

shown in equation 

𝐶1 = −𝛼𝑒𝑥𝑝  −𝜂  𝑅−𝑟0  −1𝑒2/4𝜋𝜀0                                              (31) 

where 2

0/ 4e c    and 𝜂 are undetermined constants. Substituting equation (31) and 2 0C   into 

equation (25), the potential energy of the nuclear force at zero distance can be written as equation  
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Which can be simplified to equation (28) in the case of  0 1R r   . 

4、 Short-range weak force of the electric field 

When the interaction distance between two charged particles𝑟𝑚  is less than the maximum 

distance of the short-range weak force, a short-range weak force is generated between the two 

charged particles. Based on equation (17), it can be deduced whether 𝜌 = 0the short-range weak 

force exists between two charged particles by determining whether is zero. There are two types of 

short-range weak forces between two charged particles. 

4.1 Short-range weak electric force 

When𝜌 = 0 , in addition to obtaining the result of equation (20) from equation (17), another 

potential energy of the short-range weak electric force can be obtained when 𝑥 > 𝑥𝑚 , given by 

equation 
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where𝑔we = 𝐶1𝑟𝑚𝑒2𝑅/𝑟𝑚 , the strength of the short-range weak electric force.𝑥 = 1/𝑟 ,and 𝑥𝑚 =

1/𝑟𝑚 ,where is the maximum distance of the short-range weak electric force. 𝐶1 and 𝐶2 are 
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undetermined constants.  

The short-range weak electric force has a maximum distance of 𝑟𝑚 . The constant 𝐶2 = 𝑔we/𝑅in 

equation (33) can be determined from 𝛻𝑉we = −
𝑔we𝑅𝑟

𝑟4
 1− 𝑟/𝑟𝑚 by the fact that the short-range 

weak force is zero at the maximum distance. Substituting this constant into equation (33) yields the 

𝑟𝑚 potential energy and force of the short-range weak electric force between two charges, given by 

equations  
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and  

𝐹we = −𝛻𝑉we = −
𝑔we𝑅𝑟

𝑟4
 1− 𝑟/𝑟𝑚 𝑒𝑅/𝑟𝑚 −𝑅/𝑟                                         (35),  

when 𝑟 = 𝑟𝑚 respectively. It can be seen that when , the short-range weak electric force between two 

charges is zero; when 𝑟 < 𝑟𝑚 , the short-range weak electric force between two charges is attractive 

for like charges and repulsive for opposite charges; and when 𝑟 > 𝑟𝑚 , there is no short-range weak 

electric force. 

 

 

 

 

  

 

 

 

 

Fig.3 Potential energy curve of short range weak electric force 

Figure 3 shows the potential energy curve of the short-range weak electric force when 𝑟𝑚 = 0.9am = 𝑅/15. At

mr r  , the potential energy of the short-range weak electric force has a maximum value of  

  /

we wee /mR r

mV r g R                                               （36） 

Based on the maximum distance 𝑟𝑚 and the strength of the short-range weak force, it can be inferred 

that the relation of  integral constant 𝑅in the potential energy formula and the particles masses 

𝑀and𝑚is different from equation (22) and is given by equation  

   2 2 2 2 2 2/ 4 / / 4 /R e Mc GM c e mc Gm c    
 

  2= / /c G M m c                                                                      (37), 

 where 𝜇 = 𝑚𝑀/ 𝑚 +𝑀 , is the fine structure constant. 

The short-range weak force is also a type of electric field force, and its strength 𝑔weis related to the 

strength of the electric field force through a Fermi distribution function, as shown in equation  
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where and are undetermined constants. Substituting equation (38) into equation (34) yields the 
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potential energy of the short-range weak electric force, given by equation  
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whichcan be simplified to the following equation when 𝜂  𝑅 − 𝑟0 >> 1 
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4.2 Short-range weak nuclear force 

For 0  , in addition to obtaining the result of equation (28) from equation (17), another 

potential energy of the short-range weak nuclear force can be obtained when 𝑥 > 𝑥𝑚 , given by 

equation  
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0, and equation (41) can be rewritten as equation  
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 where  mk r r    . At mr r , the potential energy of the short-range weak nuclear force has a 

maximum value of . 
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Experimental observations have shown that all weak interaction strengths are equal 
[12]

, such as

 、 — 、—e , decay,  capture, and related strange particle decays. Without exception, they 

all have approximately the same strength. This means that both the short-range weak electric force 

and the short-range weak nuclear force have the same potential energy at the maximum distance mr

of the force, given by equation  

   ws wem mV r V r
                                                          

(44) 

 Substituting equations (36) and (43) into equation (44) reveals equation  

ws we / 2mkr

mg g e kr
                                                       (45) 

. Substituting equation (45) into equation (42) yields the potential energy of the short-range weak 

nuclear force, given by equation 
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Fig.4 .Potential energy curve of short range weak nuclear force action 

Figure 4 shows𝑘𝑟𝑚 the potential energy curves of the weak nuclear force for differentvalues of , where 

Figure 4(a) showsthe curves for when 𝑟𝑚 = 0.9am=𝑅and 𝑘𝑟𝑚 = 1, 4, 6, 8. Figure 4(b) showsthe 

curves for when 0.9am= /15mr R and are 𝑘𝑟𝑚 = 5, 20, 23, 25. It can be observed from the two figures 

that when  𝑟𝑚 << 𝑅the potential energy of the short-range weak nuclear force has two maximum 

values, indicating that the short-range weak nuclear force also exhibits attractive and repulsive 

changes with distance. 

Utilizing ws wsV F , we can obtain short-range weak nuclear force 
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When mr r , the short-range weak nuclear force is zero; when mr r , the short-range weak nuclear 

force is attractive for two charges with the same sign and repulsive for charges with opposite signs; 

when mr r , there is no short-range weak nuclear force, which is similar to the behavior of short-

range electroweak force. 

5、Universal Gravitation under the Influence of Complex Charges 

The study of the unification of universal gravitation and electromagnetic force is a hot topic in 

theoretical physics 
[13,14].

 The author found that positive and negative charges can be represented as 

complex quantities. By multiplying these complex charges, it can be concluded that the attractive 

force between charges with opposite signs is slightly greater than the repulsive force between 

charges with the same sign. Therefore, even in neutral matter without net charge, there exists residual 

electric field attraction, which is Newton's universal gravitation. 

In a source-free space, the electric potential 0Q  of the electric field excited by charge   satisfies 

the Laplace's equation 2 0  . By using the two-dimensional plane where the action distance r  is 

located, a canonical function with the electric potential   as itsmaginary part can be obtained. 
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 f z i  
                                                             

(48) 

where𝑖 =  −1. The force components at point z  are−𝑑𝜑/𝑑𝑥,−𝑑𝜑/𝑑𝑦, and therefore the magnitude 

is  

 
22 2 2

df z
E

x y x x dz

            
          

                                         

(49) 

By using iz r  e , the force X can be transformed into the plane where 
2 2r x y   is located, 

where 𝜙 is a constant, i.e., 

 
e ei i

df z dr d d
E i

dr dz dr dr

  
  

                                           

(50) 

Taking the constant   equal to 0 0 0k r , where 0 / rr r , 0  is an undetermined constant, and
0k  is 

the direction vector of the electric 0Q field lines of charge. The right side of equation (50) is the 

complex potential ei  of the radial electric field. 

0e / 4i Q r                                                        (51) 

where 𝑄 = 𝑄0 𝑒𝑖𝑘0⋅𝑟0𝜙0 . From this, it can be inferred that the acting charges can also be 

represented as complex quantities. By multiplying these two complex charges, it can be found that, 

under the same charge condition, the repulsive force between charges with the same sign is slightly 

smaller than the attractive force between charges with opposite signs. This means that even in neutral 

matter without net charge, there exists electric field attraction, and it can be proven that this electric 

field attraction is the universal gravitation proportional to the product of the masses of the two 

neutral substances. 

The potential energy of charge q  under the action of chargeQ  should be the real part of the 

product of these two complex charges, as known from (20): 

 * / /0 0
0 0 0 0

0

Re e cos e
4

R r R rq Q
V q

r
 



          k k r

                                
(52) 

where 0 0 0

0 e
i

q q
 


k r , 0

k is the direction vector of charge 0q , Re [  ]  represents the real part, and * 

denotes the complex conjugate of 𝑞. 

According to the convention that the direction of electric field lines of positive charges is away 

from the charge and the direction of electric field lines of negative charges is towards the charge, 

when𝑄0 and𝑞0 have charges with the same sign, as shown in Figure 5(a), the direction of electric 

field lines 0
k  is opposite to 0k  , so 𝑘0 − 𝑘0

′  ⋅ 𝑟0 = 2; when𝑄0 and  𝑞0have charges with opposite 

signs, as shown in Figure 5(b), the direction of electric field lines 0
k  is the same as 0k , so  𝑘0 −



𝑘0
′ ⋅ 𝑟0 = 0. Thus, according to (52), the potential energy of static interaction between two charges 

with the same sign is 

𝑉𝑠𝑎𝑚𝑒 = 𝑐𝑜𝑠 2𝜙0  𝑞0𝑄0 𝑒
−𝑅/𝑟/4𝜋𝜀0𝑟                                           (53) 

and the potential energy of static interaction between two charges with opposite signs is 

𝑉𝑜𝑝𝑝𝑠 = − 𝑞0𝑄0 𝑒
−𝑅/𝑟/4𝜋𝜀0𝑟                                                 (54) 

It can be seen that as long as
0 0  , it is always 𝑉𝑜𝑝𝑝𝑠  >  𝑉𝑠𝑎𝑚𝑒   . This means that even in neutral 

matter without net charge, there exists electric field attraction, and Newton's universal gravitation is 

the manifestation of this static residual electric field force. 

 

   

 

 

(a)                                                 (b) 

Figure 5. Direction relation of electric power lines between two acting charges 

Matter is composed of protons, neutrons, and electrons as fundamental particles. Protons carry a unit 

positive charge, electrons carry a unit negative charge, and neutrons have no charge. Moreover, the 

number of protons in neutral matter is always equal to the number of electrons it contains. If neutrons 

are considered as fundamental particles carrying equal amounts of positive and negative charges, as 

shown in Figure 6, the total potential energy of static interaction between two neutral substances can 

be observed as 

𝑉 = 2 𝑉𝑜𝑝𝑝𝑠 + 𝑉𝑠𝑎𝑚                                                           (55) 

If the mass of M -neutral object carries positive and negative charges of 0Q  units each 0q , 𝑀and 

𝑚the mass of -neutral object carries positive and negative charges of X units each, 

  

 

 

 

 

The attractive force           The repulsive force 

Figure 6. Diagram of electrostatic interaction between two neutral substances 

The total potential energy of static interaction between 𝑉𝑜𝑝𝑝𝑠 and 𝑉𝑠𝑎𝑚 can be calculated 

separately using equations (54) and (53), and by substituting these two equations into (55), the total 

potential energy of static interaction between two neutral objects can be obtained as 

  / 2 /

0 0 0 0 0 0 0 02 1 cos 2 e / 4 sin e /R r R rV q Q r q Q r        
                

(56) 

0Q  and 0q  can be resolved by the following way: letM  represents the molar mass of the neutral 

substance's atomic nucleus and 0N  represents Avogadro's constant, and 0 /N M represents the total 



number of atomic nuclei in a unit mass of neutral substance. Therefore, the total number of atomic 

nuclei in a neutral substance with massM is 0 /MN M  . Since each atomic nucleus carriesM  

nucleons (protons and neutrons), the total number of nucleons in a neutral substance with mass M  is 

 0 0/n MN M M MN 
                                                   

(57) 

where each proton and neutron carries a unit positive charge e , and each neutron carries a unit 

negative charge e . Therefore, the total number of positive and negative charges in a neutral 

substance with massM  is equal to the total number of nucleons, and M the total positive and 

negative charges are 

0 0 0Q Q n e MN e    
                                               

(58) 

Similarly, it can be known that the total positive and negative charges in a neutral substance with 

massm  are 

0 0 0q q mN e   
                                                     

(59) 

By substituting equations (58) and (59) into (58), the gravitational potential energy between two 

neutral objects with massesM  and m can be obtained as 

22 2 / /

0 0 0sin e / e /R r R rV N e Mm r GMm r     
                               

(60) 

where 
22 2

0 0 0sin /G N e   . The corresponding gravitational force is 

  / 31 / e /R rV GMm R r r    F r
                                         

(61) 

It can be seen that there is also an equilibrium distance for the universal gravitation between two 

neutral substances. When r R , the force is zero; when r R , the force is repulsive; when r R , 

the force is attractive. Newton's universal gravitation is the result when r R . 

If we let 

  ,                      
2* /e GM rcM M  ，

2* /e Gm rcm m                                           (62) 

the potential energy of universal gravitation given by equation (60) can also be written as 

* * /V GM m r                                                                   (63) 

From this, it can be seen that universal gravitation can also be expressed in the form of 

* * * /V m GM m r    F g                                               (64) 

where  * /GM rg . The inertial force experienced by an object under the influence of 

gravitational force is 

* * */GM m r m  惯F = F g
                                               

(65) 

6、 Conclusion 



Based on the fact that there are positive and negative vacuum polarization charge clouds around 

all charged particles, this paper proposes that the vacuum polarization charge clouds have additional 

effects on the surrounded charges. By considering these additional effects, the electric field potential 

energy between two charges derived from the divergence equation of the electric field satisfies a 

constant-coefficient linear second-order differential equation. 

2
2 4

02
2 e /Rxd V dV
R R V x q

dx dx
       

This is the desired equation that unifies the four field forces. The homogeneous linear equation 

has a solution of long-range electric field force without divergence at zero distance. The non-

homogeneous linear equation has two independent solutions, which are the nuclear force potential 

energy without divergence at zero distance and the short-range weak force potential energy. This 

paper also proposes the asymmetry of charge interaction, where the repulsive force between charges 

with the same sign is slightly smaller than the attractive force between charges with opposite signs. 

This leads to the presence of electric field attraction between two neutral substances even without net 

charge, and it is demonstrated that this electric field attraction is universal gravitation proportional to 

the product of the masses of the two neutral substances. Furthermore, from the intensities of the four 

field forces: 

Electric field force        2

0 1 2 0/ 4 / 4qQ Z Z e   

Nuclear force                 
 0

exp 1 2

0/ 4
R r

c e


 
   
   

Short-range weak force  
 0

exp 12 2

0/ 4
R r

c e


  
   
   

Universal gravitation      2 2 2

0 0 04 sin / 4GMm N Mm e   

it can be seen that all four field forces originate from the interaction between charges. Charges 

are not only the source of electric field force but also the source of nuclear force, short-range weak 

force, and universal gravitation. Without the existence of positive and negative charges, the four field 

forces do not exist. 

The biggest flaw in using the electric field force theory to establish a unified theory of the four 

field forces is that it is too intuitive and simple. However, the creator of the world is an "old man" 

with billions of years of experience. Compared to the complex and uncertain "rules of the game," he 

may prefer the former. 
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