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1. Introduction 

The character of drought is a lack of 

precipitation, soil moisture, groundwater, 

evapotranspiration, and stream flow under 

average conditions (Anderson et al., 2013, Kumar 

et al., 2014). Droughts are commonly associated 

with water shortages due to seasonal rainfall 

delays and affect people's livelihoods and regional 

and global economies (Uttaruk & Laosuwan, 

2017). Droughts can develop into natural disasters 

depending on their severity, duration, and 

frequency, which increases the need for drought 

monitoring and water resource management 

systems (Anderson et al., 2011, 2013). Drought is 

one of the main factors in environmental 

degradation because it controls the growth of 

vegetation cover and makes the soil very 

vulnerable to erosion in the case of concentrated 

precipitation (Alamdarloo et al., 2018). 

Therefore, drought monitoring is the most 

important in providing scientific information for 

policy establishment and drought risk mitigation 

(Hua et al., 2019). Droughts can often classify as 

meteorology, agriculture, hydrology, and socio-

economic droughts (Heim, n.d.). Due to the high 
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This paper describes the comprehensive analysis and evaluation of 

agricultural drought phenomena in the Democratic People's Republic of 

Korea from 2012 to 2021 using remote sensing technology and GIS 

technology, which have proven superior in drought research. We 

analyzed dynamic changes in agricultural drought according to the 

characteristics of each drought index during the growth period from 2012 

to 2021 through the calculation of SPI, VCI, TCI, VHI, and NVSWI 

derived from time series CHIRPS and MODIS data. The moisture 

condition index (MCI) was newly proposed starting from the importance 

of the moisture condition of crops, confirmed reliable by comparing it 

with the staple agricultural drought indices. Paper proposed a new 

integrated drought index CDI that comprehensively reflects the 

vegetation status, soil moisture status, and crop moisture status using the 

logical calculation function of the geographic information system. 

As a result of examining the dynamic change of agricultural drought 

from 2012 to 2021 using CDI, high temperature and sub-normal rainfall 

were the main factors causing the drying. The integrated drought index 

CDI proposed in this paper provides a premise that can be a staple 

indicator for agricultural drought analysis and evaluation as it is possible 

to comprehensively and simultaneously consider the vegetation status, 

soil moisture status, and crop moisture status. 
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temperature and low precipitation, the weather 

causes meteorological drought due to a lack of 

water. Due to the meteorological drought, crops 

are affected by the lack of water, resulting in 

agricultural drought. Agricultural drought means 

reduced crop yield due to unreliable rainfall and 

inadequate soil moisture in the crop root area. 

(Gidey et al., 2018). 

Agricultural drought is difficult to understand 

because the interaction between vegetation and 

climate is more complex than other droughts (M. 

Gao et al., 2008). Traditional methods and point-

based datasets alone are not adequate to monitor 

and evaluate agricultural drought (Du et al., 

2018). The relationship analysis between 

environmental parameters and vegetation cover is 

a prerequisite for understanding the 

spatiotemporal changes of agricultural drought 

for planning and management (Mahajan & 

Dodamani, 2016). Time-series remote sensing 

data plays the essential role in detecting, 

evaluating, and monitoring agricultural drought 

through real-time data availability and a variety 

spatial and temporal ranges (Gumma et al., 2019). 

Multifariousness drought indices have developed 

to quantify the drought characteristics, 

particularly severity and spatial extension (Jin & 

Zhang, 2016). When comparing the remote 

sensing-based drought index and the field-based 

drought index, the remote sensing-based drought 

index is more reliable for monitoring 

spatiotemporal patterns of drought conditions. 

The drought index obtained through the time 

series satellite is very reliable in monitoring and 

evaluating the drought severity with 

spatiotemporal resolution in the case of limited 

observation stations (AghaKouchak et al., 2015). 

In recent studies, the Climate Hazards Group 

Infrared Perception with Stations (CHIRPS) 

dataset was utilized as a substitute for ground-

based precipitation data for drought assessment 

(F. Gao et al., 2018) (Rivera et al., 2019). The 

Standardized Precipitation Index (SPI) was used 

as an index for monitoring weather and drought 

based entirely on precipitation data and as a useful 

tool (Dutta et al., 2015b) (Quiring & Ganesh, 

2010). 

(Mckee et al., 1993), SPI provides an easy and 

flexible way to monitor drought at various scales, 

from near regularity (-0.99) to extreme drought 

(<-2.0). Vegetation response depends on 

environmental factors such as duration, severity, 

the strength of drought, vegetation phenomena, 

soil type, agricultural practices, and given 

location and altitude (Wu et al., 2015;;Dubovyk et 

al., 2016). Several vegetation indices were studied 

to monitor the vegetation status in space and time. 

NDVI (Normalized Difference Vegetation Index) 

is one of the well-known indices used to monitor 

and analyze drought occurrence and vegetation 

health (Berger et al., 2013; Cai et al., 2011; Fan et 

al., 2018). MODIS provides real-time land 

surface temperature (LST), and the accessibility 

of these surface temperature data helps monitor 

and quantify the correlation between seasonal and 

interseasonal vegetation dynamics and surface 

temperature change (Wan, Wang, et al., 2004; 

Wan, Zhang, et al., 2004). The combination of 

NDVI and LST provides valuable information 

and a potent relationship to explain agricultural 

drought as an early warning system (Zhang et al., 

2017). The lack of moisture due to high 

temperature increases the severity of agricultural 

drought and directly affects vegetation health. 

Temperature Condition Index (TCI) and 

Vegetation Condition Index (VCI) characterize 

changes in heat and moisture conditions of 

vegetation, respectively (Bhuiyan et al., 2006; F. 

N. Kogan, 1995), and the combination of these 

two indices indicates overall vegetation health. 

(C. F. Chen et al., 2017). The combination of TCI 

and VCI has proven to be a practical tool for 

detecting agricultural drought (Bhuiyan et al., 

2006; F. N. Kogan, 2001). The Vegetation Supply 

Water Index (VSWI) (Carlson et al., 1990a), 

developed as an agricultural drought index, shows 

the change in LST for NDVI but has a direct 

limitation to quantifying the drought severity 

because of the land cover type and measurement 

time-sensitivity of the image. Therefore, the 

normalized VSWI (NVSWI) was proposed 

(Abbas et al., 2014) and used to measure the 

severity of the region and the absolute agricultural 

drought (Abbas et al., 2014; S. Chen et al., 2018a). 

NVSWI of 0 indicates the most severe drought, 

and 100 indicates the most humid conditions 

during the study period. Drought research using 

remote sensing technology has been conducted 

extensively in many countries and regions. But 

there is no case of analyzing long-term 

fluctuations in drought based on remote sensing 

using the Democratic People's Republic of Korea 

as the research area. Therefore, the Monitoring of 

agricultural drought dynamics in the Democratic 

People's Republic of Korea was conducted from 

2012 to 2021 using various drought indices 

derived from time-series remote sensing data 

products in this paper.  

This paper has three main contents. 

 (1) From 2012 to 2021year, the period from 

June to September, which is the main period for 

crop growth, was set as the research period, and 



then based on MODIS data, NDVI, LST, VCI, 

TCI, VHI, NDWI (Normalized Difference Water 

Index) for the study area ), MCI, VSWI, and 

NVSWI to investigate the onset, extent, and 

intensity of drought. 

 (2) Based on the calculation of 1-month SPI, 3-

month SPI, and 6-month SPI using the CHIRPS 

(Climate Hazards Group Infrared Precipitation 

with Stations) dataset, based on correlation 

analysis with the drought indices calculated 

above, the agricultural drought in the study area 

drought index suitable for monitoring determined. 

Develop an integrated drought index CDI that 

comprehensively reflects the characteristics of 

drought indices by using the logical calculation 

function of the geographic information system 

and analyze the agricultural drought dynamics 

from 2012 to 2021 using the CDI. 

2. Materials and Methods 

2.1. Research area 

The Democratic People's Republic of Korea is 

located in East Asia (38° to 43° north latitude, 

124.5° to 131° east longitude) (Fig 1).  

The land area is 123,000 square kilometers, 

about 80% is mountainous, and about 14% is 

agricultural land. The annual mean temperature is 

about 10.7°C, and every twelve months average 

precipitation is 596.3mm (Park et al., 2017). In 

summer, it is greatly affected by the East Asian 

monsoon, and in the rainy season, heavy rains 

occur (Om et al., 2018). Due to the large annual 

variability of the East Asian monsoon and the 

relationship between the intensity and rainfall of 

the summer monsoon during the rainy season, 

frequent droughts and floods occur in the study 

area, causing considerable damage to agricultural 

activities. 

 
Fig 1. Location map of a research area with land cover grade 

2.2. Data collection and preprocessing 

2.2.1. Time series CHIRPS data 

Nowadays, CHIRPS is an IR-based quasi-global 

satellite precipitation dataset and is becoming a 

competent and ideal precipitation dataset for 

drought monitoring and warning (Funk et al., 

2015). CHIRPS has a relatively long-term record 

(> 30 years) than other satellite precipitation 

products are developed to support the United 

States Agency for International Development 

Famine Early Warning System Network (FEWS 

NET) and combined through the ‘smart’ 

interpolation techniques with an accurate spatial 

resolution (0.05° × 0.05°). CHIRPS data are 

available on the website 

(http://chg.geog.ucsb.edu/data/chirps/). Based on 

the time series CHIRPS data, monthly 

precipitation data obtained from 2000 to 2021, 

and 1-month SPI (1-month SPI), 3-month SPI (3-

month SPI), and 6-month SPI (6-month) were 

calculated. 

To maintain the identical resolution as the 

MODIS data, it interpolated using the raster to 

point tool and IDW interpolation tool of ArcGIS. 

Next, the resolution of the SPI raster image 

increased using the bilinear resampling technique. 

2.2.2. Time series MODIS data 

The Level-1 and Atmosphere Archive & 

Distribution System (LAADS) Distributed Active 

Archive Center (DAAC) website 

(https://ladsweb.modaps.eosdis.nasa.gov/) with 

MOD13Q1 data products from 2012 to 2021 

MOD11A2 data product was provided. The Terra 

Moderate Resolution Imaging Spectrum 

radiometer (MODIS) Vegetation Indices 

(MOD13Q1) Version 6 data are generated every 

http://chg.geog.ucsb.edu/data/chirps/


16 days at 250 meters (m) spatial resolution as a 

Level 3 product. The MOD13Q1 product 

provides two primary vegetation layers. The first 

is the Normalized Difference Vegetation Index 

(NDVI) which has referred to as the continuity 

index to the existing National Oceanic, 

Atmospheric Administration-Advanced Very 

High-Resolution Radiometer (NOAA-AVHRR) 

derived NDVI. The second vegetation layer is the 

Enhanced Vegetation Index (EVI), which has 

improved sensitivity over high biomass regions. 

The algorithm chooses the best available pixel 

value from all the acquisitions from the 16 days. 

The criteria used are low clouds, low view angle, 

and the highest NDVI/EVI value. Along with the 

vegetation layers and the two quality layers, the 

HDF file will have MODIS reflectance bands 1 

(red), 2 (near-infrared), 3 (blue), and 7 (mid-

infrared), as well as four observation layers. The 

MOD11A2 Version 6 product provides an 

average 8-day per-pixel Land Surface 

Temperature and Emissivity (LST&E) with a 1 

kilometer (km) spatial resolution in a 1,200 by 

1,200 km grid. Each pixel value in the MOD11A2 

is a simple average of all the corresponding 

MOD11A1 LST pixels collected within those 

eight days. This eight days compositing period 

was selected because twice of the period is the 

exact ground track repeat period of the Terra and 

Aqua platforms. Relevant quality control 

assessments, hours, monitoring zenith angles of 

observation, and unclouded sky ranges are 

allocated with bands 31 and 32 emissivities for 

land cover types. VCI, TCI, VHI, VSWI, 

NVSWI, NDWI, and MCI were all calculated 

using the NDVI of the MOD13Q1 data product 

and the LST of the MOD11A2. Using the Project 

Raster tool of ArcGIS, the coordinate system of 

MODIS products denote as WGS84, WGS84 

converted to the WGS84/UTM zone 52N 

projection system corresponding to the research 

area. MODIS products are cut out to the boundary 

of the study area by using ArcGIS' Extract by 

mask tool and Mosaic tool. 

2.3. Method 

A flowchart for an overall drought assessment is 

shown in Fig 2. This process consisted of four 

steps. 

① Using time-series CHIRPS data from 2020 to 

2021, calculate 1-month SPI, 3-month SPI, and 6-

month SPI in ArcGIS, respectively. 

② From 2012 to 2021, MCI, VCI, TCI, VHI, 

and NVSWI are calculated in ArcGIS using 

NDVI of MOD13Q1 and LST of MOD11A2, 

which are time-series MODIS data, respectively. 

③ A correlation analysis was progressed with 

the SPI calculated in ① and the drought indices 

calculated in (2) to select the drought indices 

corresponding to the study area and combine them 

to create an integrated drought index. 

④  The comprehensive agricultural drought 

evaluation of the research area progresses by 

applying the integrated drought index. 

 
Fig 2. Flowchart for Agricultural Drought Assessment and Monitoring 

2.3.1. SPI calculation 

 (Mckee et al., 1993) designed the SPI to 

evaluate drought conditions based on the long-

term precipitation probability using the gamma 

function. Precipitation is a normalized value, and 

SPI is the number of standard deviations from the 

long-term mean of random variables regularly 

distributed in the observed precipitation data 

(Equation (1)). This index provides reliable 

estimates of the scale and severity of droughts and 

their spatial extent. If the precipitation is higher 

than the long-term average, SPI is positive, and if 

it is low, it means that the SPI is negative. SPI is 

easy to use because it requires only a single input 

data series of long-term precipitation compared 

with other drought indices. Furthermore, since it 

is based on standardized data, the SPI is spatially 

invariant and can use to assess drought in other 



regions (Guttman, 1998). The Calculation of SPI 

is as follows. 

iX X
SPI



−
=              (1) 

Where  

iX
-Precipitation in the selected period for i  

years 

X - Long-term average precipitation 
 - The standard deviation of the selected 

period 

2.3.2. Calculation of Vegetation Condition 

Index (VCI) 

The NDVI-derived VCI has been widely used to 

detect the onset, intensity, duration, and impact of 

drought (F. N. Kogan, 1995; Liu & Kogan, 2002; 

Seiler et al., 1998). The monthly VCI for the 

growth period from 2012 to 2021 was calculated 

as follows using the MODIS NDVI (MOD13Q1) 

dataset in this research. 

( )
( )

min

max min

100iNDVI NDVI
VCI

NDVI NDVI

−
= 

−

      (2) 

iNDVI
-NDVI value of the i th month 

maxNDVI , minNDVI - Minimum and maximum 

values of long-term NDVI values during the 

study period (2012-2021) 

VCI values range from 0 to 100, with a lower 

value indicating drought and a higher value 

indicating good vegetation. 

 

2.3.3. Calculation of Temperature Condition 

Index (TCI) 

The design purpose of TCI derived from LST is 

to evaluate the response stress of plants to water 

shortage (F. N. Kogan, 1995). This index 

represents the response of the vegetation cover to 

the temperature change over time. 

The monthly TCI for the growth period from 

2012 to 2021 was calculated using the MODIS 

LST (MOD11A2) dataset in this research. 

( )
( )

max

max min

100iLST LST
TCI

LST LST

−
= 

−

          (3) 

Where 

iLST
-LST value of the i th month 

minLST
, maxLST

 - Minimum and maximum 

values of long-term LST values during the study 

period (2012-2021) 

TCI values range from 0 to 100, with a lower 

value indicating drought and a higher value 

indicating good vegetation. 

 

2.3.4. Calculation of Vegetation Health Index 

(VHI) 

The Vegetation Health Index (VHI) (F. N. 

Kogan, 1997, 2001) is necessary agricultural 

drought indices widely used based on remote 

sensing information. VHI is composed of a linear 

combination of the vegetation condition index 

(VCI), which integrates information on the visible 

(VIS) and near-infrared (NIR) parts of the 

electromagnetic spectrum, and the thermal state 

index (TCI), which depends on the thermal 

infrared. 

The monthly VHI for the growth period from 

2012 to 2021 is calculated using VCI and TCI. 

( )1VHI VCI TCI =  + −        (4) 

Here, α is a coefficient that quantifies the 

relative contribution of moisture and temperature 

to vegetation health. 

 

2.3.5. Calculation of Normalized Vegetation 

Supply Water Index (NVSWI) 

Vegetation Supply Water Index (VSWI) is one 

of the widely used indicators of agricultural 

drought (Carlson et al., 1990b) and shows the 

relationship between canopy temperature change 

and soil water supply (S. Chen et al., 2018b). The 

monthly VSWI for the growth period from 2012 

to 2021 was calculated using the NDVI and LST 

in this research. 
NDVI

VSWI
LST

=                    (5) 

NVSWI provides a more reasonable drought 

severity by normalizing the VSWI over a specific 

time period. The formula for calculating NVSWI 

is as follows. 

( )
( )

min

max min

100
VSWI VSWI

NVSWI
VSWI VSWI

−
= 

−

           (6) 

Where 
VSWI  - Vegetation Supply Water Index for a 

Specific Period 

minVSWI
, maxVSWI

- Minimum and maximum 

values of long-term VSWI  values during the 

study period. 

The monthly NVSWI for the growth period 

from 2012 to 2021 was calculated in this 

research. 

 

2.3.6. Development of Moisture Condition 

Index (MCI) 

The measurement of the moisture content of 

crops occupies a principal place when analyzing 

the effects of agricultural drought. NDWI is an 

indicator to measure the moisture content of 

leaves and is used to detect and monitor 

vegetation humidity. NDWI (Normalized 

Differential Water Index) is an index derived 



from NIR and SWIR (Short Wave Infrared) 

channels, it reflects changes in both the water 

content (SWIR radiation absorption) and spongy 

mesophyll of vegetation water pipes (B. Gao, 

1996). The NDWI calculated in the 500m SWIR 

band of MODIS was recently used to detect and 

monitor the moisture state of the vegetation 

canopy over a large area (D. Chen et al., 2005; 

Delbart et al., 2005; JACKSON, 2004; Maki et 

al., 2004; Xiao et al., 2002). NDWI provides 

information on the amount of water flowing into 

plants and can be a more sensitive indicator than 

NDVI in drought monitoring because it is affected 

by both dryings and wilting of vegetation crowns 

(Gu et al., 2007). The Calculation of NDWI is as 

follows. 

 

857 2130

857 2130

NDWI
 

 

−
=

+

       (7) 

857
 and 2130

 are reflectance’s at 857 nm 

and 2130 nm, respectively. 

MOD13Q1 product contains 12 layers, of which 

band2 (16 days Near-Infrared reflectance-841 to 

876 nm) and band7 (16 days Middle Infrared 

reflectance-2105 to 2155 nm) are used to 

calculate NDWI (Dobri et al., 2021). In this paper, 

since NDWI can only represent the relative spatial 

location and cannot compare in time series, MCI 

(Moisture Condition Index) allows realistic and 

absolute comparison by normalizing NDWI 

values within the study period (2012-2021) is a 

newly proposed. 

( )
( )

min

max min

100
NDWI NDWI

MCI
NDWI NDWI

−
= 

−

     (8) 

Where 
NDWI -NDWI is the normalized difference 

water index for a specific period. 

 minNDWI
 is the minimum value of  NDWI 

pixel during the study period. 

maxNDWI  is the maximum value of  NDWI pixel 

during the study period. 

 

MCI values range from 0 to 100, with a lower 

value indicating drought and a higher value 

indicating wet conditions. 

3. Result 

The growing season in the study area is from 

June to September. In the agricultural products of 

the research area, rice is the main crop. Generally, 

rice planting in the research area is from May 15 

to June 15, and autumn harvesting is from the end 

of September to the middle of October. In 

particular, if affected by drought during this 

growth period, food harvest will decrease, and 

economic activity will be negatively affected. To 

analyze the dynamics of agricultural drought in 

the region during the growth period from 2012 to 

2021, SPI and major agricultural drought indices 

were applied in this research. 

3.1. Spatiotemporal dynamics of SPI during 

three months of the growing season 

The three-month SPI compares the total 

Precipitation from the same 3-month period with 

the Precipitation in a specific 3-month period for 

all years included in the historical record. A 3-

month SPI reflects short- and medium-term 

moisture conditions and provides a seasonal 

estimation of Precipitation. In primary 

agricultural regions, a 3-month SPI might be more 

applicable in highlighting available moisture 

conditions than the slow-responding Palmer 

Index. Fig 3 shows the spatiotemporal distribution 

of the 3-month SPI for the study area during the 

growth period from 2012 to 2021. According to 

the drought analysis based on Precipitation, 

droughts above a severe level were observed in 

2014, 2019, and June 2017.  On the contrary, wet 

conditions above permit levels were observed in 

the whole area from July to September 2013, 

August, September 2020, and June 2021. 



 
                                                           Figure 3                                                                            Figure 4 

Fig 3. Spatiotemporal distribution of 3-month SPI for study area during the growth period from 2012 to 2021 

                                            Fig 4. Spatiotemporal distribution of VCI for research area during the growth period from 2012 to 2021 

 

3.2. VCI's spatiotemporal dynamics  

The spatiotemporal distribution of VCI during 

the growth period from 2012 to 2021 is as follows 

(Fig 4).  

 

The results of drought analysis based on the 

vegetation condition are as follows (Table 1). 

Table1 

Drought analysis result based on vegetation condition 

Year Period Area Drought level 

2012 
June Central areas Severe drought 

September Eastern areas Severe drought 

2013 
June ~ August Central areas, Western areas Severe drought 

September Central areas, Eastern Mountainous areas Severe drought 

2014, 2015 
June ~ August Eastern areas, Western areas Severe drought 

September All areas Severe drought 

2016, 2017  Eastern areas, Northern areas Severe drought 

2018 June Eastern areas, Northern areas Severe drought 
2020 July, August Eastern areas Severe drought 

2021 June Western areas Severe drought 

 
3.3. TCI's spatiotemporal dynamics The spatiotemporal distribution of TCI during 

the growth period from 2012 to 2021 is as follows 

(Fig 5). 



  
                                                               Figure 5                                                                     Figure 6 

Fig 5. Spatiotemporal distribution of TCI for research area during the growth period from 2012 to 2021 

                                                Fig 6. The spatiotemporal distribution of VHI during the growth period from 2012 to 2021 

The vacant space in the Fig could not proceed 

with the drought analysis of some periods due to 

the severe cloud influence on the LST image. The 

results of drought analysis according to 

temperature conditions are as follows (Table 2).  

Table 2 

Results of drought analysis according to temperature conditions 

Year Period Area Drought level 

2012 
June Central areas, Western areas Severe drought 

August Eastern areas, Northern areas Severe drought 

2013 September Western areas Severe drought 

2014 July ~ August Central areas, Eastern areas Severe drought 
2015 August Western areas, Eastern areas Severe drought 

2016 June some places in the west and east Severe drought 

2017 September Central areas Severe drought 
2018 July All areas Severe drought 

2019 September All areas Severe drought 

2020 July All areas Severe drought 

 
3.4. VHI's spatiotemporal dynamics 

The spatiotemporal distribution of VHI during 

the growth period from 2012 to 2021 is as follows 

(Fig 6).  

The weighted average of VCI and TCI is VHI. 

The results of drought analysis according to the 

vegetation condition are as follows (Table 3).  

Table 3 

 Drought analysis results according to vegetation conditions 

Year Period Area Drought level 

2012 

June Western areas Severe drought 

August Eastern areas, Northern areas Severe drought 

September Western areas Severe drought 
2013 September All areas Severe drought 

2014 
August Western areas, Eastern areas Severe drought 

September Western areas Severe drought 
2015 September All areas Severe drought 



2017 September Central areas Severe drought 
2018 July Some places in the East and North Severe drought 

2019 
June Some places in the West and East Severe drought 

September Western areas, Northern areas Severe drought 
2020 July All areas Severe drought 

 

3.5. NVSWI's spatiotemporal dynamics The spatiotemporal distribution of NVSWI 

during the growth period from 2012 to 2021 is as 

follows (Fig 7).  

  
                                                               Figure 7                                                                    Figure 8 

Fig 7. The spatiotemporal distribution of NVSWI during the growth period from 2012 to 2021 

                                                          Fig 8. The spatiotemporal distribution of MCI during the growth period from 2012 to 2021 

According to the results of the drought analysis 

according to the soil moisture condition, the 

annual drought period is as follows (Table 4).  
Table 4 

Duration of drought in each year according to soil moisture conditions 

Year Period Drought level 

2012 June, August, September Severe drought 
2013 September Severe drought 

2014 All periods of growth Severe drought 

2015 All periods of growth Severe drought 
2016 June, September Severe drought 

2017 September Severe drought 
2018 July Severe drought 

2019 All periods of growth Moderate to severe drought 

2020 June, August Moderate to severe drought 
2021 July, August, September Moderate to severe drought 

 

3.6. MCI's spatiotemporal dynamics 

The spatiotemporal distribution of MCI during 

the growth period from 2012 to 2021 is as follows 

(Fig 7).  

 

The results of drought analysis according to the 

moisture state of crops are as follows (Table 5). 



Table5 

The results of drought analysis according to the moisture state of crops 

Year Period Area Drought level 

2012 
June Some places in the West and East Severe drought 

September Some places in the West and East Severe drought 
2013 September All areas Severe drought 

2014 August, September All areas Severe drought 

2015 
June Western areas, Central areas Severe drought 

September All areas Severe drought 

2017 September Central areas Severe drought 

2020 August Some places in the East Severe drought 
2021 June Northern areas Severe drought 

 

3.7. Development of a combined drought index 

(CDI) 

Since MCI, which reflects the moisture state of 

crops, NVSWI, which express the soil moisture, 

and VHI, which mirrors the vegetation state, play 

a fundamental role in agricultural drought 

evaluation. So it is necessary to consider the three 

indices simultaneously in space and time by 

integrating them. 

Therefore, this study proposes an integrated 

drought index that can comprehensively and 

simultaneously reflect the moisture state of crops, 

soil moisture state, and vegetation state by using 

the logical operation function of the geographic 

information system. 

The integrated drought index is as follows. 

( ) ( ) ( )CDI MCI Dt AND VHI Dt AND NVSWI Dt=         

    (9) 
1,

0,

CDI Drought

CDI No Drought

=


=

 

In Equation (9), Dt is a threshold value that 

determines the presence or absence of drought. 

The values of MCI, NVSWI, and VHI range 

from 0 to 100. 

Many researchers estimate that drought affects 

crops when the drought index value is less than 40 

(Abbas et al., 2014; F. N. Kogan, 1997, 2001). 

Therefore, in this paper, Dt was determined as 40. 

Drought dynamics during the growth period 

from 2012 to 2021 were analyzed by applying the 

integrated drought index (Fig 9). 

 
Fig 9. The spatiotemporal distribution of CDI for the research area during the growth period from 2012 to 2021 

Table 6 shows the agricultural drought damage 

situation through the integrated drought index 

during the growth period from 2012 to 2021. 
Table 6 

The agricultural drought damage situation through the integrated drought index during the growth period from 2012 to 2021 

Date Agricultural drought area (ha) Agricultural drought area (%) 

Jun 2012 564,289.370 33.63 

Aug 2012 224,452.971 13.56 
Sep 2012 285,211.350 17.20 

Aug 2013 250,094.122 14.82 

Sep 2013 401,525.555 24.81 
Jul 2014 494,242.470 29.54 

Aug 2014 812,527.189 48.34 

Sep 2014 740,063.067 43.69 
Jun 2015 452,622.051 26.87 



Aug 2015 242,661.904 14.41 
Sep 2015 519,326.204 31.60 

Jun 2016 197,882.793 11.98 

Jul 2016 33,259.173 2.14 
Aug 2016 47,751.998 2.89 

Sep 2016 298,403.536 17.66 

Aug 2017 223,709.749 13.89 
Sep 2017 514,123.652 30.75 

Jul 2018 377,185.043 22.67 

Aug 2018 74,322.175 4.63 
Sep 2018 6,131.579 0.35 

Jun 2019 381,644.373 22.75 

Jul 2019 92,531.109 5.51 
Aug 2019 197,325.377 11.91 

Sep 2019 479,935.451 29.08 

Jun 2020 126,347.699 8.04 
Aug 2020 48,866.830 2.83 

Sep 2020 18,023.127 1.05 

Jul 2021 296,173.871 18.18 

Aug 2021 80,639.560 4.91 

Sep 2021 69,491.234 4.13 

As shown in Fig 11 and Table 6, the effects of 

the drought were severe in 2012, 2014, 2015, 

2017, and 2019. 

In particular, the drought effect was the most 

severe in 2014. Fig 10 shows the rainfall status of 

the study area from 2000 to 2020. 

 
Fig 10. Rainfall status in the study area from 2000 to 2020 (source: http://ClimateEngine.org) 

As shown in Fig 10, the rainfall fell sharply 

from 2014 and recorded low precipitation until 

2019. July and August are the rainiest seasons of 

the year in the study area. However, the average 

monthly rainfall in July 2014 was 166.4 mm, and 

in August 2014 was 145.6 mm, the lowest rainfall 

compared to other years. As shown in Table 6, the 

area affected by the drought in August 2014 was 

812,527.189ha which is 48.34% of the total 

agricultural land. In fact, in 2014, almost all 

reservoirs in the study area were depleted, causing 

significant damage to crops, and the impact 

continued in 2015. 

4. Discussion 

4.1. Correlation between SPI and drought 

indices 

Rainfall is a significant factor influencing soil 

moisture, and the probability of drought 

occurrence is proportional to the amount of 

rainfall. In particular, information on the delay 

time between rainfall and soil moisture implied by 

the drought index enables more detailed strategies 

for crop relationships. Therefore, it is necessary to 

study the relationship between drought and 

rainfall. 



This study used the Pearson correlation 

coefficient to analyze the correlation between the 

SPI (1-month SPI, 3-month SPI, 6-month SPI) 

reflecting the drought condition caused by rainfall 

and MCI, VHI, and NVSWI, which are major 

drought indices (Table 7).  

Table 7 shows the correlation between SPI and 

drought indices during the growth period from 

2012 to 2021. 
Table 7 

Correlation between SPI and drought indices during the growth period from 2012 to 2021 

Date SPI 
Drought index’s 

MCI VHI NVSWI VCI TCI 

Jun 2012 

SPI1 0.038 0.014 -0.080** 0.059 -0.021 

SPI3 0.109** 0.117** 0.026 0.112** 0.070* 

SPI6 0.127** 0.134** 0.040 0.133** 0.076* 

Aug 2012 

SPI1 0.083* 0.189** 0.258** 0.116** 0.118** 

SPI3 -0.025 -0.263** -0.352** -0.021 -0.363** 
SPI6 -0.021 -0.270** -0.369** -0.016 -0.379** 

Sep 2012 

SPI1 0.148** 0.310** 0.255** 0.230** 0.234** 

SPI3 0.146** 0.432** 0.403** 0.307** 0.419** 

SPI6 0.116** 0.384** 0.339** 0.265** 0.382** 

Aug 2013 

SPI1 0.053 0.157** 0.161** -0.025 0.305** 

SPI3 -0.037 0.039 0.006 -0.025 0.129** 
SPI6 -0.075* -0.038 -0.082* -0.044 0.029 

Sep 2013 

SPI1 0.135** 0.130** 0.244** 0.214** -0.069* 

SPI3 -0.138** -0.176** -0.185** -0.043 -0.204** 
SPI6 -0.123** -0.156** -0.153** -0.027 -0.193** 

Jul 2014 

SPI1 0.033 0.089** 0.076* 0.052 0.138** 

SPI3 0.126** 0.144** 0.109** 0.072* 0.197** 
SPI6 0.123** 0.141** 0.092** 0.087* 0.175** 

Aug 2014 

SPI1 0.213** 0.217** 0.164** 0.216** 0.035 

SPI3 -0.013 0.011 0.009 -0.173** 0.246** 
SPI6 -0.030 -0.006 0.000 -0.200** 0.254** 

Sep 2014 

SPI1 -0.143** -0.190** -0.278** -0.109** -0.171** 

SPI3 -0.133** -0.079* -0.235** -0.168** 0.048 
SPI6 -0.060 0.052 -0.070* -0.125** 0.195** 

Jun 2015 

SPI1 0.311** 0.031 0.037 0.190** -0.117** 

SPI3 0.327** 0.061 0.072 0.207** -0.082* 

SPI6 0.325** 0.054 0.074* 0.205** -0.086* 

Aug 2015 

SPI1 -0.035 0.069 0.154** -0.078* 0.157** 

SPI3 -0.254** 0.081* 0.009 -0.258** 0.375** 
SPI6 -0.223** 0.123** 0.049 -0.232** 0.391** 

Sep 2015 

SPI1 0.170** 0.211** 0.217** 0.178** 0.069* 

SPI3 0.003 -0.052 0.027 -0.014 -0.020 
SPI6 0.007 -0.028 0.079* -0.049 0.133** 

Jun 2016 

SPI1 0.299** 0.395** 0.371** 0.163** 0.351** 

SPI3 0.198** 0.427** 0.409** 0.112** 0.428** 
SPI6 0.181** 0.425** 0.415** 0.096** 0.441** 

Jul 2016 

SPI1 0.153** -0.098* -0.093* 0.019 -0.224** 

SPI3 0.151** 0.032 0.009 0.065 0.005 
SPI6 0.147** 0.028 0.013 0.044 0.014 

Aug 2016 

SPI1 -0.072 -0.024 -0.072 -0.018 -0.006 

SPI3 -0.107** 0.008 -0.106** -0.014 0.024 
SPI6 -0.122** -0.022 -0.156** 0.033 -0.001 

Sep 2016 

SPI1 -0.014 0.191** 0.071* -0.101** 0.390** 

SPI3 0.064 0.214** 0.106** 0.013 0.309** 

SPI6 0.132** 0.315** 0.274** 0.002 0.462** 

Aug 2017 

SPI1 0.083* 0.374** 0.388** 0.129** 0.418** 

SPI3 0.114** 0.362** 0.421** 0.204** 0.306** 
SPI6 0.099** 0.310** 0.359** 0.181** 0.273** 

Sep 2017 

SPI1 0.159** 0.281** 0.280** 0.240** 0.195** 

SPI3 0.013 0.086* 0.150** 0.167** -0.067* 
SPI6 -0.035 0.087* 0.133** 0.118** -0.012 

Jul 2018 

SPI1 0.190** 0.047 0.169** 0.079* -0.087* 

SPI3 0.129** 0.040 0.153** 0.006 -0.021 
SPI6 0.086** -0.006 0.104** -0.030 -0.054 

Aug 2018 
SPI1 -0.136** -0.185** -0.176** -0.019 -0.167** 
SPI3 -0.026 -0.036 0.082** -0.029 0.001 

SPI6 -0.056 -0.076* 0.009 -0.013 -0.037 

Sep 2018 
SPI1 -0.081* -0.250** -0.224** -0.019 -0.167** 
SPI3 0.204** -0.139** -0.156** -0.029 0.001 



SPI6 0.173** -0.120** -0.119** -0.013 -0.037 

Jun 2019 

SPI1 0.093** 0.262** 0.236** 0.102** 0.281** 

SPI3 0.134** 0.316** 0.279** 0.107** 0.327** 

SPI6 0.072* 0.260** 0.228** 0.051 0.305** 

Jul 2019 

SPI1 0.115** 0.245** 0.235** 0.206** 0.165** 

SPI3 0.164** 0.300** 0.257** 0.189** 0.246** 

SPI6 0.174** 0.289** 0.240** 0.180** 0.227** 

Aug 2019 

SPI1 -0.022 -0.141** -0.255** 0.078* -0.224** 

SPI3 -0.038 -0.135** -0.212** 0.043 -0.202** 

SPI6 -0.062 -0.170** -0.248** -0.001 -0.227** 

Sep 2019 

SPI1 -0.087** 0.028 0.242** -0.099** 0.279** 

SPI3 0.012 0.051 0.153** 0.042 -0.040 

SPI6 0.038 -0.005 0.050 0.044 -0.179** 

Jun 2020 

SPI1 0.146** 0.277** 0.349** 0.000 0.301** 

SPI3 0.144** 0.350** 0.410** -0.003 0.375** 

SPI6 0.134** 0.283** 0.344** 0.009 0.287** 

Aug 2020 

SPI1 -0.185** 0.051 0.146** -0.171** 0.264** 

SPI3 -0.158** 0.248** 0.338** -0.097** 0.431** 

SPI6 -0.161** 0.252** 0.339** -0.103** 0.438** 

Sep 2020 

SPI1 -0.090** -0.405** -0.260** -0.300** -0.281** 

SPI3 0.105** 0.302** 0.300** 0.216** 0.264** 

SPI6 0.146** 0.373** 0.350** 0.276** 0.325** 

Jul 2021 

SPI1 -0.157** 0.004 -0.103** -0.089* 0.096** 

SPI3 -0.050 0.039 -0.033 -0.033 0.074* 

SPI6 -0.028 -0.004 -0.023 -0.058 0.029 

Aug 2021 

SPI1 -0.185** -0.250** -0.295** -0.260** -0.115** 

SPI3 -0.197** -0.304** -0.355** -0.254** -0.169** 
SPI6 -0.171** -0.268** -0.298** -0.258** -0.134** 

Sep 2021 

SPI1 -0.056 -0.171** -0.078* -0.028 -0.182** 

SPI3 -0.053 0.167** -0.032 -0.006 0.227** 
SPI6 -0.069* 0.132** -0.081* -0.004 0.174** 

**   Correlation is significant at the 0.01 level (2-tailed). 

*     Correlation is significant at the 0.05 level (2-tailed). 

 
According to the comprehensive analysis of 

Table 7, VHI and NVSWI maintained a 

significant correlation with 3-month SPI, which 

reflects seasonal precipitation estimates, and 

shows that the time difference between rainfall 

and drought is three months. In addition, it 

provides the premise that VHI and NVSWI can be 

used as drought indices to characterize drought 

conditions in the study area. 

4.2. Correlation between MCI and major 

drought indices 

In this paper, MCI has newly developed 

considering the moisture content measurement of 

crops as a principal indicator in the analysis of 

agricultural drought. The correlation between 

MCI and major drought indices was analyzed 

using the Pearson correlation coefficient to 

confirm the MCI's usefulness (Table 8). 
Table 8 

Correlation between MCI and major drought indices 

Date MCI-TCI MCI-VHI MCI-NVSWI MCI-VCI 

Jun 2012 0.203** 0.503** 0.292** 0.712** 
Aug 2012 0.028 0.299** 0.185** 0.499** 

Sep 2012 0.171** 0.513** 0.534** 0.663** 

Aug 2013 0.253** 0.465** 0.392** 0.595** 
Sep 2013 0.009 0.424** 0.495** 0.652** 

Jul 2014 0.216** 0.476** 0.406** 0.618** 

Aug 2014 -0.032 0.385** 0.254** 0.642** 
Sep 2014 0.275** 0.428** 0.474** 0.544** 

Jun 2015 0.097* 0.482** 0.355** 0.720** 

Aug 2015 -0.053 0.333** 0.255** 0.592** 
Sep 2015 -0.022 0.305** 0.322** 0.507** 

Jun 2016 0.061 0.348** 0.228** 0.599** 

Jul 2016 -0.012 0.188** 0.200** 0.458** 
Aug 2016 0.058 0.242** 0.255** 0.463** 

Sep 2016 0.096** 0.327** 0.295** 0.470** 

Aug 2017 0.119** 0.412** 0.285** 0.623** 
Sep 2017 0.192** 0.431** 0.433** 0.578** 

Jul 2018 0.055 0.462** 0.314** 0.678** 

Aug 2018 0.029 0.301** 0.259** 0.535** 
Sep 2018 -0.093** 0.238** 0.264** 0.506** 

Jun 2019 0.085* 0.362** 0.196** 0.610** 



Jul 2019 0.094** 0.277** 0.221** 0.417** 
Aug 2019 0.051 0.289** 0.205** 0.550** 

Sep 2019 -0.128** 0.383** 0.058 0.626** 

Jun 2020 0.084* 0.268** 0.147** 0.510** 
Aug 2020 -0.079* 0.172** 0.138** 0.505** 

Sep 2020 0.162** 0.410** 0.313** 0.577** 

Jul 2021 0.137** 0.385** 0.318** 0.621** 
Aug 2021 0.133** 0.365** 0.299** 0.569** 

Sep 2021 -0.033 0.278** 0.334** 0.556** 

**   Correlation is significant at the 0.01 level (2-tailed). 
*     Correlation is significant at the 0.05 level (2-tailed). 

 
Table 8 shows the correlation between MCI and 

VCI is the biggest. As shown in Fig 10, the 

rainfall in August 2014 was the lowest at 145.61 

mm, and the fall in August 2020 was the highest 

at 447.98 mm. To further refine the relationship 

between MCI and major drought indices, 

extracted scatter plots using data from August 

2014 and August 2020 (Fig 11).  

 
Fig 11. Scatter plot of major drought indices for August 2014 and August 2020 MCI 

As can be seen in Fig 11, the correlation 

between MCI and VCI was the highest. Also, 

many other studies have recognized VCI as an 

effective agricultural drought index (Alahacoon 

& Amarnath, 2022; Arun Kumar et al., 2021; Cao 

et al., 2022; Dutta et al., 2015a; Wolteji et al., 

2022). On the other hand, the fact that MCI and 

VCI have a high correlation is also the basis for 

using MCI, which reflects the moisture state of 

crops, as an agricultural drought index becoming. 

In addition, the role of MCI must be considered in 

agricultural drought research for the study area as 

VHI, which can be said to be the synthesis of VCI 

and TCI, was selected as the drought index of the 

study area. 

5. Conclusions  

We analyzed the first agricultural drought 

dynamics for the Democratic People's Republic of 

Korea during the growing period from 2012 to 

2021 using various representative drought indices 

derived from remote sensing data. The 

spatiotemporal dynamics of rainfall-based 

drought indices SPI (1-month SPI, 3-month SPI, 

and 6-month SPI) derived from CHIRPS showed 

that drought frequently occurred in the entire 

region from 2014 to 2019. In addition, SPI is used 

to verify the validity of the agricultural drought 

index based on the Pearson correlation analysis 

with the representative agricultural drought 

indices VCI, TCI, VHI, and NVSWI. As a result, 

3-month SPI shows a significant correlation with 

VHI and NVSWI. Through Spatio-temporal 

dynamics analysis of VCI, TCI, VHI, and 

NVSWI, it was possible to analyze the onset, 

extent, and intensity of drought according to 

vegetation condition, temperature condition, and 

soil humidity condition. As a result, in 2012, 

2014, 2015, and 2017, it can be seen that the 

effects of the drought were severe in 2019. In this 

paper, the moisture condition index MCI was 

developed starting from the importance of 

measuring the moisture content of crops in 

agricultural drought evaluation. In addition, it 

proved that there is a significant correlation with 

VCI through correlation analysis between MCI 

and farming drought indices. We evaluated VHI, 

NVSWI, and MCI as agricultural drought indices 

corresponding to the study area through 

correlation analysis. Also, by using the logical 

calculation function of the geographic 



information system, we proposed a 

comprehensive drought index CDI that can 

simultaneously examine the vegetation status, soil 

moisture status, and crop moisture status. As a 

result of investigating the spatiotemporal 

distribution of agricultural drought and the 

drought-damaged area applying CDI from 2012 to 

2021, the worst drought occurred in 2014, and the 

effect continued in 2015. In addition, the 

frequency of occurrence of the agricultural 

drought was higher in the western region than in 

other zones, and it found that the main factors 

causing the agricultural dry were relatively high 

temperature and below-average rainfall. The 

newly proposed integrated drought index CDI 

provides a comprehensive and consistent 

temporal and spatial range of vegetation status, 

soil moisture status, and crop moisture status, 

showing its potential as a reliable agricultural 

drought index in realizing drought mitigation and 

adaptation strategies. 
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