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Abstract

In this present paper we will show you an elementary proof of the Goldbach’s
Conjecture based on probabilities.
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1 INTRODUCTION

On the year 1742, professor Christian Goldbach had some correspondence with the famous mathe-
matician Leonhard Euler establishing, in your comments, the basis of the problem that we know in
modern times as ”Goldbach’s Conjecture”, that says ”EVERY EVEN NUMBER GREATER OR
EQUAL TO 4 IS THE SUM OF TWO PRIMES” [1] [2].

In the dawn of January 9 in 2022 we was thinking, relaxed, at the moment of almost sleeping,
about how to solve the problem, that arose by a random though, and suddenly became in an
illuminated key idea: PROBABILITIES. We have an even number greater or equal to 4 that can
be expressed as the sum of two numbers. Some combinations are: not prime + not prime, prime
+ not prime, not prime + prime and prime + prime. We mean: not prime ”and” not prime, prime
”and” not prime, not prime ”and” prime and prime ”and” prime. We have a set of pairs and like
the set of poker all the possibilities of its combinations can be calculated as probabilities and all
of them exists actually as events. In two hours of strong thinking we came to the solution of the
theorem as an sketch. In the next afternoon we proceeded to write the first proof and calculate its
correctness. Later, we discovered the second proof in another way. We show you the results for
your enjoyment.
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2 PRELIMINARY THEOREM

Theorem 1. (Christian Goldbach 1742, Danilo Chávez 2022-01-17)
Let be N ≥ 14 EVEN NUMBERS. The case of 4 ≤ N < 14 is very known by simple counting.

Let be E : {1, 2, 3, ...N−1} a set of numbers smaller than N. Let be E×E : {(1, 1), (1, 2), (1, 3), ...(N−
1, N − 2), (N − 1, N − 1)} the cartesian product of every number smaller than N which represents
the pairs of sums of the numbers. The cardinality of the set E × E is

#(E × E) = (N − 1)2

which represents the total quantity of sums between the numbers.
Let be G : {(1, N − 1), (2, N − 2), (3, N − 3), ...(N − 2, 2), (N − 1, 1)} a subset of E × E which
REPRESENTS the set of PAIRS whose sum is equal to N .

The cardinality of the set G is

#G = N − 1

If we consider INDEPENDENT EVENTS in the probability of G to find N = prime+ prime

*******************************

”EVERY EVEN NUMBER GREATER OR EQUAL TO 4 IS THE SUM OF TWO PRIMES”

*******************************

Proof. Proof by contradiction.
When we take a pair whose sum is equal to N (an even number), we can see the event of taking

two numbers whose possible combinations are: not prime + not prime, prime + not prime, not
prime + prime, prime + prime. That means: not prime AND not prime, prime AND not prime, not
prime AND prime, prime AND prime. We can calculate the probability of each one of that events.
If the probability of an event exists is because the event actually exists (the pairs of numbers we
are looking for) like in a set of poker. We are looking for the event where we have a prime + prime,
that means prime AND prime, simultaneously, in the subset G (G by Goldbach).

DEFINITION OF COUNTEREXAMPLE TO TEST. Suppose an hypothetical even number
N that CAN NOT be expressed as the sum of two prime numbers. If we suppose that the event
to find one number simultaneously with another number whose sum is equal to N are totally
INDEPENDENT events, we have that the probabilities of the numbers given its sums equal to N
are as follows

P (not prime + not prime) =

(
(N − 1)− π(N − 1)

N − 1

)(
(N − 1)− π(N − 1)

N − 1

)
=

((N − 1)− π(N − 1))2

(N − 1)2

P (prime + not prime) =

(
π(N − 1)

N − 1

)(
(N − 1)− π(N − 1)

N − 1

)
=

(π(N − 1))((N − 1)− π(N − 1))

(N − 1)2
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P (not prime + prime) =

(
(N − 1)− π(N − 1)

N − 1

)(
π(N − 1)

N − 1

)
=

(π(N − 1))((N − 1)− π(N − 1))

(N − 1)2

Because the hypothetical number we choose CAN NOT be expressed as the sum of two prime
numbers

P (prime + prime) = 0

The probability of all its possibilities are as follows

P (not prime + not prime) + P (prime + not prime) + P (not prime + prime) + P (prime + prime)

=
((N − 1)− π(N − 1))2

(N − 1)2
+
(π(N − 1))((N − 1)− π(N − 1))

(N − 1)2
+
(π(N − 1))((N − 1)− π(N − 1))

(N − 1)2
+0

=
(N − 1)2 − (π(N − 1))2

(N − 1)2
< 1

An ABSURD because we have considered all the possibilities of such an hypothetical number
N , the sum must be equal to 1!!, the fraction of pairs of numbers whose sum is equal to N. WE
FOUND A CONTRADICTION!! DOES NOT EXIST such a number whose sum never is a prime
plus another prime if we consider INDEPENDENT EVENTS.

We conclude that ”EVERY EVEN NUMBER GREATER OR EQUAL TO 4 IS THE SUM OF
TWO PRIME NUMBERS” if we consider INDEPENDENT EVENTS.

Observation: To reaffirm our result, we can see that assigning a probability to the two prime
numbers combination we have

P (prime + prime) =

(
π(N − 1)

N − 1

)(
π(N − 1)

N − 1

)
=

(π(N − 1))2

(N − 1)2

The probability of all the possibilities are as follows

P (not prime + not prime) + P (prime + not prime) + P (not prime + prime) + P (prime + prime)

=
((N − 1)− π(N − 1))2

(N − 1)2
+

(π(N − 1))((N − 1)− π(N − 1))

(N − 1)2

+
(π(N − 1))((N − 1)− π(N − 1))

(N − 1)2
+

(π(N − 1))2

(N − 1)2

= 1
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This is the probability of the set G of numbers whose sum is equal to N.
We finally conclude again that ”EVERY EVEN NUMBER GREATER OR EQUAL TO 4 IS

THE SUM OF TWO PRIME NUMBERS” if we consider INDEPENDENT EVENTS.
Quod erat demonstrandum (Q.E.D).

We see that the function

(π(N − 1))2

(N − 1)2

which represents the probability to find N = prime+prime , if we SUPPOSE INDEPENDENT
EVENTS, is always greater than zero for finite numbers and tends to zero in the infinite. This
result is necessary to understand the proof of Goldbach’s Conjecture.

3 PRELIMINARY LEMMAS ON (π(x))2 > x

Theorem 2. (Danilo Chávez 2023-08-08)
Let be x > 0. If

√
x > ln(x) then

e
√
x > x

Proof. Let f(x) = ex and g(x) = x2. We know that, if x ≥ 0

ex > x2

Taking the inverse functions of f(x) and g(x), f−1(x) = ln(x) and g−1(x) =
√
x, we have

√
x > ln(x)

Now developing it’s consequences we have

√
x > ln(x)

e
√
x > x

Quod erat demonstrandum (Q.E.D).

In the first graphic we can see that ex > x2

In the second graphic we can see that
√
x > ln(x)
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Here we show three different approaches to show that (π(x))2 > x.

Lemma 1. (Danilo Chávez 2023-02-10)
Let be x ≥ 5393. If e

√
x+1 > x then

(π(x))2 > x

Proof. First we begin with an inequality (please see the graphics of the lemmas at the end)

e
√
x+1 > e

√
x > x

e
√
x+1 > x

Rearranging we have

√
x+ 1 > ln(x)

√
x > ln(x)− 1
√
x

ln(x)− 1
> 1

x

ln(x)− 1
>

√
x

In 2010, Pierre Dusart [3] proved that

π(x) >=
x

ln(x)− 1

if
x >= 5393

So
π(x) >=

x

ln(x)− 1
>

√
x

π(x) >
√
x

and it follows that

(π(x))2 > x

Quod erat demonstrandum (Q.E.D).

Lemma 2. (Danilo Chávez 2023-02-15)
Let be x ≥ 17. If e

√
x > x then

(π(x))2 ≥ x
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Proof. First we begin with an inequality (please see the graphics of the lemmas at the end)

e
√
x > x

Rearranging we have

√
x > ln(x)

x > (ln(x))2

x

(ln(x))2
> 1

x2

(ln(x))2
> x(

x

(ln(x))
)

)2

> x

In 1962, J. Barkley Rosser and Lowell Schoenfeld [4] proved that

π(x) >
x

ln(x)

if
x >= 17

So

(π(x))2 >

(
x

ln(x)

)2

> x

and it follows that

(π(x))2 > x

Quod erat demonstrandum (Q.E.D).

Lemma 3. (Danilo Chávez 2023-02-15)
Let be x ≥ 88783. If e

√
x > x then

(π(x))2 > x

Proof. First we begin with an inequality (please see the graphics of the lemmas at the end)

e
√
x > x

Rearranging we have

√
x > ln(x)

x > (ln(x))2

x

(ln(x))2
> 1

x2

(ln(x))2
> x
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(
x

(ln(x))
)

)2

> x

In 2010, Pierre Dusart [3], in page 9, proved that if x ≥ 88783

π(x) ≥ x

ln(x)

(
1 +

1

ln(x)
+

2

(ln(x))2

)
we see that

π(x) >
x

ln(x)

So

(π(x))2 >

(
x

ln(x)

)2

> x

and it follows that

(π(x))2 > x

Quod erat demonstrandum (Q.E.D).

4 PROOF OF THE GOLDBACH’s CONJECTURE

The key idea to prove the Goldbach’s Conjecture is to use the Set G and its probabilities. We make
a function that describes the TRUE PROBABILITY of finding N = prime+ prime and is directly
proportional to the probability of finding N = prime + prime, if we assume INDEPENDENT
EVENTS, that we saw in the preliminary theorem. When we have the definition of the TRUE
PROBABILITY, we can set the proportional function to be zero (as an argument of nullification
of the TRUE PROBABILITY) but it fails in the main inequation that we found, excluding the
zero as a solution of the TRUE PROBABILITY. So, always there is a probability to have N =
prime+ prime if N ≥ 88783 as even numbers.

Theorem 3. (Christian Goldbach 1742, Danilo Chávez 2023-02-22)
Let be N ≥ 4 EVEN NUMBERS.
Let be E : {1, 2, 3, ...N − 1} a set of numbers smaller than N.
Let be E × E : {(1, 1), (1, 2), (1, 3), ...(N − 1, N − 2), (N − 1, N − 1)} the Cartesian product of

every number smaller than N which represents the pairs of sums of the numbers.
The cardinality of E × E is

#(E × E) = (N − 1)2

which represents the total quantity of sums between the numbers.

Let be G : {(1, N − 1), (2, N − 2), (3, N − 3), ...(N − 2, 2), (N − 1, 1)} a subset of E × E which
REPRESENTS the set of PAIRS whose sum is equal to N .

The cardinality of the set G is

#G = N − 1
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Let be ENpp(N − 1) the event to find N = prime+ prime, actually it is a function of N − 1, its
domain is the set of even numbers N ≥ 88783 and its codomain is the set of integers.

Let be
ENpp(N−1)

N−1 the TRUE PROBABILITY to find N = prime+ prime if we NOT ASSUME
INDEPENDENT EVENTS, actually it is a function of N−1, its domain is the set of even numbers
N ≥ 88783 and its codomain is the set of rational numbers.

Let be (π(N−1))2

(N−1)2
the probability to find N = prime + prime if we assume INDEPENDENT

EVENTS, actually it is a function of N − 1, its domain is the set of even numbers N ≥ 88783 and
its codomain is the set of rational numbers.

Let be c(N − 1) the proportional function that we will use between
ENpp(N−1)

N−1 and (π(N−1))2

(N−1)2
,

its domain is the set of even numbers N ≥ 88783 and its codomain is the set of rational numbers.

*******************************

”EVERY EVEN NUMBER GREATER OR EQUAL TO 4 IS THE SUM OF TWO PRIMES”.

*******************************

Proof. The case of 4 ≤ N < 88783 is very known to be true by intensive computation by Matti K.
Sinisalo [5], or by Jörg Richstein [6], or by Tomás Oliveira e Silva, Sigfried Herzog and Silvio Pardi
[7].

We will take the case of N ≥ 88783 as even numbers, the limit given by Pierre Dusart [3] in
2010, in page 9.

If we pull apart the number N into two numbers

N = number1 + number2

being elements of the set G, The TRUE PROBABILITY to find two prime numbers, SIMUL-
TANEOUSLY, given its sum equal to N in the set G is

P (Prime+ Prime) =
ENpp(N − 1)

(N − 1)

We do not know for sure what is the complete expression for ENpp(N−1) but we can work with
it in this way. The event ENpp(N−1) is a random integer (in appearance) greater or equal than zero.

We will show that ENpp(N − 1) ̸= 0 which means that always there is N = prime+ prime.

*********************************************************************************
As

ENpp(N − 1)

(N − 1)

is the TRUE PROBABILITY to have N = prime+ prime and is directly proportional to

(π(N − 1))2

(N − 1)2

the TRUE PROBABILITY to have N = prime+ prime is
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ENpp(N − 1)

(N − 1)
∝ (π(N − 1))2

(N − 1)2

so we have

************************

ENpp(N − 1)

(N − 1)
=

c(N − 1)(π(N − 1))2

(N − 1)2

This is our MAIN EQUATION, remember that.

************************

By lemma 1, lemma 2 and lemma 3, above this proof, we know that if N − 1 >= 88783

(π(N − 1))2 > N − 1

so

(π(N − 1))4 > (N − 1)2

Returning to our main equation, we have

ENpp(N − 1)

(N − 1)
=

c(N − 1)(π(N − 1))2

(N − 1)2
>

c(N − 1)(π(N − 1))2

(π(N − 1))4
=

c(N − 1)

(π(N − 1))2

************************

ENpp(N − 1)

(N − 1)
=

c(N − 1)(π(N − 1))2

(N − 1)2
>

c(N − 1)

(π(N − 1))2

This is our MAIN INEQUATION, remember that.

************************
so

ENpp(N − 1)

(N − 1)
>

c(N − 1)

(π(N − 1))2

If we set c(N − 1) = 0

ENpp(N − 1)

N − 1
> 0

but in our main equation

ENpp(N − 1)

N − 1
= 0

AN ABSURD!! A CONTRADICTION!!

In our main inequation we see that
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ENpp(N − 1)

(N − 1)
= 0 > 0

AN ABSURD!! A CONTRADICTION!!

We note that there is no loss of solutions because we never altered the main equation and the
main inequation.

We conclude that

c(N − 1) ̸= 0

which means that

ENpp(N − 1) ̸= 0

*********************************************************************************
By lemma 1, lemma 2 and lemma 3, above this proof, we know that, if N − 1 >= 88783

(π(N − 1))2 > N − 1

rearranging we have

(π(N − 1))2

(N − 1)2
>

1

(N − 1)

So, because

ENpp(N − 1)

(N − 1)
∝ (π(N − 1))2

(N − 1)2

and

ENpp(N − 1) ̸= 0

and

(π(N − 1))2

(N − 1)2
>

1

(N − 1)

then

ENpp(N − 1)

(N − 1)
>

1

(N − 1)

which shows that the true probability to find N = prime+ prime is greater than the minimal
probability to find the sum of only one pair of numbers, assuring that ALWAYS THERE IS A SUM
OF TWO PRIMES EQUAL TO N .

Because

ENpp(N − 1) ∝ (π(N − 1))2

(N − 1)
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and

ENpp(N − 1) ̸= 0

and

(π(N − 1))2

(N − 1)
> 1

then

ENpp(N − 1) > 1

Assuring that the event ENpp(N−1) is always greater to 1. Always there is N = prime+prime.

We conclude that EVERY EVEN NUMBER GREATER OR EQUAL TO 4 IS THE SUM OF
TWO PRIME NUMBERS.

Quod erat demonstrandum (Q.E.D).

5 TABLES AND GRAPHICS OF THE THEOREM

In this section we present the tables and related graphics that shows the behaviour of the Goldbach’s
Conjecture.

We plotted the even numbers 4 ≤ N ≤ 200. π(N − 1) is taken from N. J .A. Sloane OEIS
A000720 [8].
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We can see that
ENpp(N−1)

N−1 is about the order of (π(N−1))2

(N−1)2
and guided by it, both of them are

greater than 1
N−1
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We can see that ENpp(N − 1) is about the order of (π(N−1))2

(N−1) and guided by it, both of them
are greater than 1

6 TABLES AND GRAPHICS OF THE LEMMAS

In this section we present the tables and related graphics that shows the behaviour of π(N − 1)2 >
N − 1.

We plotted the even numbers 4 ≤ N ≤ 200. π(N − 1) is taken from N. J .A. Sloane OEIS
A000720 [8].
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We can see that

e
√
x+1 > e

√
x > x
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We can see that

N − 1 > π(N − 1) >
N − 1

ln(N − 1)
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if
N − 1 ≥ 11

We can see that

(π(N − 1))2 >
(N − 1)2

(ln(N − 1))2
> N − 1

if

N − 1 ≥ 11

7 TABLES AND GRAPHICS OF THE FUNCTION

c(N - 1)

In this section we present the tables and related graphics that shows the behaviour of the function
c(N − 1).

We plotted the even numbers 4 ≤ N ≤ 200, here it is the function c(N − 1). π(N − 1) is taken
from N. J .A. Sloane OEIS A000720 [8].
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As we can see, the inferior limit of the function c(N − 1) tends to 1.

lim
N→∞

inf
(N − 1)ENpp(N − 1)

(π(N − 1))2
= lim

N→∞
inf c(N − 1) = 1

8 TABLES AND GRAPHICS OF THE INEQUAL-

ITY

In this section we present the tables and related graphics that shows the behaviour of the main
inequality.

We plotted the even numbers 4 ≤ N ≤ 200. Here it is the main inequality. π(N − 1) is taken
from N. J .A. Sloane OEIS A000720 [8].
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As we can see

ENpp(N − 1)

(N − 1)
>

c(N − 1)

(π(N − 1))2

the right expression never is zero, but tends to zero in the infinite

lim
N→∞

c(N − 1)

(π(N − 1))2
= 0
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As we can see

ENpp(N − 1) >
c(N − 1)(N − 1)

(π(N − 1))2

the right expression never is zero, but tends to zero in the infinite

lim
N→∞

c(N − 1)(N − 1)

(π(N − 1))2
= 0
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