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Two Proofs of Fermat’s Last Theorem by Relating to 

Monic Polynomial Properties 

Tae Beom Lee 

Abstract: Fermat's Last Theorem(FLT) states that there is no natural number set {𝑎, 𝑏, 𝑐, 𝑛} 

which satisfies 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 when 𝑛 ≥ 3. In this thesis, we related the LHS of 𝑎𝑛 = 𝑐𝑛 −

𝑏𝑛 to 𝑥𝑛 − 𝑎𝑛 and the RHS to 𝑥𝑛 − (𝑐𝑛 − 𝑏𝑛). By doing so, we could analyse FLT in view 

of properties of monic polynomials such as factoring, root structure and graphs.The 

polynomial properties narrowed the vast possible approaches to FLT to elementary level 

mathematics. We relied on factoring, rational root theorem and parallel movement of graphs. 

And we succeeded to find simple proofs of FLT, which many people waited for so long time.  

1. Introduction 

FLT was inferred in 1637 by Pierre de Fermat, and was proved by Andrew John Wiles [1] 

in 1995. But the proof is not easy even for mathematicians, requiring more simple proof.  

From now on, let 𝑎, 𝑏, 𝑐, 𝑛 ≥ 3  and other variables be natural numbers, otherwise 

specified, and let’s relate FLT to two monic polynomials as follows.  

𝑓(𝑥) = 𝑥𝑛 − 𝑎𝑛.  (1.1) 

𝑔(𝑥) = 𝑥𝑛 − (𝑐𝑛 − 𝑏𝑛).  (1.2) 

If the graphs of 𝑓(𝑥) and 𝑔(𝑥) can overlap or 𝑔(𝑎) = 𝑎𝑛 − (𝑐𝑛 − 𝑏𝑛) = 0, then 𝑐𝑛 =

𝑎𝑛 + 𝑏𝑛 is satisfied, proving FLT false. Can 𝑔(𝑥) be of the form 𝑥𝑛 − 𝑎𝑛? The constant term 

𝑐𝑛 − 𝑏𝑛 of 𝑔(𝑥) has the form 𝑥𝑛 − 𝑎𝑛. Of course 𝑎 = √𝑐𝑛 − 𝑏𝑛
𝑛

 is the real root, but, by the 

rational root theorem [2], the integer root(s) must be involved in the constant terms of 𝑓(𝑥) 

and 𝑔(𝑥). For 𝑓(𝑥) the constant term explicitly involves 𝑎, but for 𝑔(𝑥), how 𝑎 can be 

involved in 𝑐𝑛 − 𝑏𝑛? We studied in factoring and graph views, and found that 𝑓(𝑥) and 𝑔(𝑥) 

can’t be isomorphic(same form) to each other.  

2. Two Views on FLT and Lemmas 

2.1. Factoring View 

The number of roots of 𝑥𝑛 − 1 is as follows and depicted in Figure 1 [3][4]. 

① Odd 𝒏 ≥ 𝟑: One integer root and 𝑛 − 1 complex roots, which are pairwise complex 

conjugate. 

② Even 𝒏 ≥ 𝟒 : Two integer roots and 𝑛 − 2  complex roots, which are pairwise 

complex conjugate. 

Likewise, the number of roots of 𝑥𝑛 − 𝑎𝑛 is same as the case of 𝑥𝑛 − 1, for odd 𝑛, one 

integer root and 𝑛 − 1 complex roots, for even 𝑛, two integer roots and 𝑛 − 2 complex roots, 

and all complex roots are pairwise complex conjugate.  
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Figure 1. Number of roots examples of 𝑥𝑛 − 1. 

    

(a) Roots of 𝑥5 − 1 = 0. (b) Roots of 𝑥6 − 1 = 0. 

Lemma 2.1.1. The below (2.1.1) is the irreducible factoring of (1.1) over the complex field [5]. 

𝑓(𝑥) = 𝑥𝑛 − 𝑎𝑛 = ∏ (𝑥 − 𝑎𝑒
2𝑘𝑖

𝑛 )𝑛
𝑘=1 .  (2.1.1) 

Proof. The roots of (1.1) are 𝑎𝑒
2𝑘𝑖

𝑛 , 1 ≤ 𝑘 ≤ 𝑛, so, (2.1.1) is the irreducible factoring of (1.1) 

over the complex field.                                                            ■ 

Lemma 2.1.2. The below (2.1.2) is the irreducible factoring of ℎ(𝑐, 𝑏) = 𝑐𝑛 − 𝑏𝑛  over the 

complex field. 

ℎ(𝑐, 𝑏) = 𝑐𝑛 − 𝑏𝑛 = ∏ (𝑐 − 𝑏𝑒
2𝑘𝑖

𝑛 )𝑛
𝑘=1   (2.1.2) 

Proof. The roots of ℎ(𝑐, 𝑏) are c = 𝑏𝑒
2𝑘𝑖

𝑛 , 1 ≤ 𝑘 ≤ 𝑛, so, (2.1.2) is the irreducible factoring of 

ℎ(𝑐, 𝑏) over the complex field.                                                      ■ 

Lemma 2.1.3. All factors of (2.1.2) can’t have same magnitude.  

Proof. The 𝑛 factors of (2.1.2) are c − 𝑏𝑒
2𝑘𝑖

𝑛 , 1 ≤ 𝑘 ≤ 𝑛. Each factor can be considered as 

the difference vector between (𝑐, 0) and 𝑏(𝑐𝑜𝑠
2𝑘

𝑛
, 𝑠𝑖𝑛

2𝑘

𝑛
), as in Figure 2.  

Figure 2. Vector factor examples of (2.1.2). 

    

(a) n = 5 example. (b) n = 6 example. 

Because |𝑐 − 𝑏𝑒
2𝑘𝑖

𝑛 |  is same only with its complex conjugate |𝑐 − 𝑏𝑒
−2𝑘𝑖

𝑛 | , the 

magnitude of all factors of (2.1.2) can’t be same for all 𝑘.                               ■ 

Lemma 2.1.4 A polynomial whose roots are all factors in (2.1.2) is (2.1.3) below. 

𝑝(𝑥) = ∏ {𝑥 − (𝑐 − 𝑏𝑒
2𝑘𝑖

𝑛 )}𝑛
𝑘=1 .  (2.1.3) 
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Proof. The 𝑛 factors of (2.1.2) are 𝑐 − 𝑏𝑒
2𝑘𝑖

𝑛 , so, 𝑝(𝑥) is a polynomial whose roots comprise 

all factors in (2.1.2).                                                               ■ 

Lemma 2.1.5. A polynomial with different root magnitude can’t be of the form 𝑥𝑛 − 𝑎𝑛. 

Proof. The 𝑛 roots of 𝑥𝑛 − 𝑎𝑛 are all located on a circle of radius 𝑎 in the complex plane. 

But, if the magnitude of 𝑛 roots is not all same, all roots can’t be located on a same circle. 

So, a polynomial with different root magnitude can’t be of the form 𝑥𝑛 − 𝑎𝑛.               ■ 

2.2. Graph View  

Following three graphs are results of parallel movement of the graph 𝑥𝑛, as in Figure 3.   

𝑓(𝑥) = 𝑥𝑛 − 𝑎𝑛.   

𝑔(𝑥) = 𝑥𝑛 − (𝑐𝑛 − 𝑏𝑛).   

𝑝(𝑥) = ∏ {𝑥 − (𝑐 − 𝑏𝑒
2𝑘𝑖

𝑛 )}𝑛
𝑘=1 .   

Figure 3. Example graphs of 𝑓(𝑥), 𝑔(𝑥) and 𝑝(𝑥).  

    

(a) Odd n graphs. (b) Even n graphs. 

Two graphs 𝑓(𝑥) and 𝑔(𝑥) are generated by vertically moving the graph 𝑥𝑛, but graph 

𝑝(𝑥) requires, in addition, horizontal movement by 𝑐. That is to say, 

𝑝(𝑥) = ∏ {𝑥 − (𝑐 − 𝑏𝑒
2𝑘𝑖

𝑛 )}𝑛
𝑘=1 =   

∏ {(𝑥 − 𝑐) − (−𝑏)𝑒
2𝑘𝑖

𝑛 )} =𝑛
𝑘=1    

∏ {𝑋 − (−𝑏)𝑒
2𝑘𝑖

𝑛 )}, 𝑋 = 𝑥 − 𝑐𝑛
𝑘=1 .  (2.2.1) 

Lemma 2.2.1. To make 𝑝(𝑥) overlap 𝑓(𝑥), which satisfies 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛, 𝑐 should be zero. 

Proof. Two graphs 𝑓(𝑥) = 𝑥𝑛 − 𝑎𝑛  and 𝑔(𝑥) = 𝑥𝑛 − (𝑐𝑛 − 𝑏𝑛)  must exactly overlap to 

satisfy 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛. One 𝑥-intercept of 𝑝(𝑥) always is 𝑐 − 𝑏, whether 𝑛 is odd or even, 

which is an integer-root-factor of the constant term 𝑐𝑛 − 𝑏𝑛 = (𝑐 − 𝑏)(𝑐𝑛−1 + 𝑐𝑛−2𝑏 +⋯+ 𝑏𝑛). 

Moving 𝑝(𝑥) to overlap 𝑓(𝑥) by integer steps, the following two operations must be taken. 

① In (2.2.1), 𝑋 = 𝑥 − 𝑐 should be 𝑥, i.e., 𝑐 = 0. 

② Vertically move to make the constant term to be −𝑎𝑛. 
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Only integer-step-moving is permitted to keep the 𝑥-intercept 𝑐 − 𝑏 be an integer. So, to 

make 𝑝(𝑥) overlap 𝑓(𝑥), which satisfies 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛, 𝑐 should be zero.              ■ 

3. Proofs of FLT 

Lemma 3.1. Lemma 2.1.5 is a proving Lemma.  

Proof. Because 𝑛 factors of (2.1.2) can’t lie on the circle with radius 𝑎, so, a polynomial form 

𝑥𝑛 − (𝑐𝑛 − 𝑏𝑛) can’t be identical to a polynomial form 𝑥𝑛 − 𝑎𝑛. So, FLT is true.           ■ 

Lemma 3.2. Lemma 2.2.1 is a proving Lemma. 

Proof. When there can’t be any parallel graph movements that make 𝑝(𝑥) and 𝑓(𝑥) overlap, 

without making 𝑐 = 0, any non-trivial solutions 𝑐𝑛 = 𝑎𝑛 + 𝑏𝑛 can’t be generated. So, FLT is 

true.                                                                            ■ 

5. Conclusion 

In this thesis, by relating FLT to monic polynomial properties, we could see the structural 

aspects of FLT. Each 𝑎𝑛, 𝑏𝑛 and 𝑐𝑛 has its own internal structure, and 𝑐𝑛 − 𝑏𝑛 can’t be a 

constant term of a polynomial form 𝑥𝑛 − 𝑎𝑛 . We also graphically showed that 𝑝(𝑥) can’t 

overlap 𝑓(𝑥) unless 𝑐 = 0. The parallel movements of a graph are equivalent to algebraic 

operations. So, if there can’t be possible graphic movement operations to make 𝑝(𝑥) and 

𝑓(𝑥) overlap, without making 𝑐 = 0, a non-trivial solution 𝑐𝑛 = 𝑎𝑛 + 𝑏𝑛 can’t be achieved.  

As for the solutions of 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛, 𝑎 + 𝑏 = 𝑐 is the first and the last solution for odd 𝑛, 

and 𝑎2 + 𝑏2 = 𝑐2 for even 𝑛. When 𝑛 ≥ 3, the advent of pairwise complex conjugate roots 

latches all further possible solutions. Anyway, we proved FLT using ordinary methods, which 

many people waited for so long time. But, we think Fermat was wrong, because our proofs 

can be summed up on the margin of a page. 
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