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Abstract. We show that the gravitational mass defect is positive, in contrast to the 

electromagnetic or nuclear mass defects, which are negative. 
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1. Introduction 

It is generally accepted that the gravitational mass defect is negative in the same way as the 

electromagnetic or nuclear mass defect. Misner, Thorne and Wheeler write [1]: “The mass-

energy of the Earth-moon system is less than the mass-energy that the system would have if the 

two objects were at infinite separation. The mass-energy of a neutron star is less than the mass-

energy of the same number of baryons at infinite separation”.  

But please be careful. When the apple, which Newton watched, fell on ground, it acquired 

kinetic energy 2 / 2mv mgh . So the apple acquired the mass 2/mgh c m  , because 2E mc . 

Thus, the law of mass conservation of the closed Earth-apple system was violated. The place 

where the apple fell absorbed this additional mass m  in the form of the mass-energy of heating 

after the fall of the apple.  

Similarly, during a gravitational compression of a dust cloud, the cloud heats up with a 

corresponding increase in the mass and, accordingly, with a violation of the mass conservation 

law of a closed system. 

On the contrary, if the velocity of revolving of the Moon around the Earth is directed 

away from the Earth, the Moon will move away from the Earth, and its speed, and, accordingly, 

the mass will decrease compared to the initial values, and not increase, as the authors claim. 

The law of conservation of mass-energy is usually violated during gravitational 

interaction. Einstein geometrized the Newtonian gravitational field. "Gravitational field" does 

not exist within the framework of general relativity. Weyl writes about “leading” (Führung) [2]. 

All gravitational phenomena are explained by the curvature of space-time. At the same time, no 

energy or mass is attributed to space itself. That's why the mutual gravitational attraction of 

masses is fundamentally different from the mutual electrical attraction of electric charges of 

different signs. To compare electrical and gravitational attraction, it is convenient to consider an 

isolated centrally symmetric system. 
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In the case of electricity, this is an oppositely charged ball and a shell located at some 

distance from the ball (Fig. 1). Between them, and only between them, there is an electric field 

E  with its mass-energy density [3, p. 41] 2

0 | | /2w   E . The field is eliminated when the shell 

falls on the ball, and the field energy goes first into kinetic energy, and then into heat. So the 

mass-energy of the system remains unchanged during the fall. 

In the gravitational case (Fig. 2), this is a massive ball and a massive shell (we will 

assume that the masses are the same). Unlike the electrical case, the so-called “gravitational 

field” exists not only between the ball and the shell. The field of double strength exists outside 

the shell. The field is not eliminated when the shell falls on the ball. On the contrary, the field 

doubles in this interval. But the entire gravitational field exists in empty space, to which no mass 

is attributed. However, the kinetic mass-energy, and then the thermal mass, arise in the same way 

as in the electrical case. So in the gravitational case, the mass of the system increases! The 

gravitational mass defect is positive. It is an increase in mass. An example is constructed for the 

creation of matter in the form of a compact body in a gravitational field [4]. But since the 

gravitational field does not exist within the framework of general relativity, this mass increase 

comes from nothing from the modern point of view. Or you need to assign a negative sign to the 

energy density of the gravitational field, since the field increases simultaneously with the 

increase in mass. However Weyl writes: "Einstein left to the mercy of fate the principle of 

unique localization for gravitational energy. This negative sign was the main stumbling block" 

[2]. 

 

2. Space-time curvature 

Einstein's great discovery is that matter turns out to bend space (space-time). The curvature of 

space depends both on the mass-energy density of the substance and on the pressure in the 

substance. This curvature of space occurs both inside the substance and in adjacent empty 

regions of space. In particular, the three-dimensional space around the Sun is curved. This 

curvature in the literal sense is observed as an additional curvature of the flight trajectory of 

photons attracted to the Sun with respect to the trajectory in Euclidean space [5-7].  

Mathematically, Einstein's discovery is expressed by the fact that the Einstein tensor G


 , 

which describes the local geometric properties of space-time, is proportional to the matter 

energy-momentum tensor T


 , which locally describes the mass-energy and momentum density 

of matter: 



/ 2 8G R R T    

         ,   287.4 10    m/kg.                                 (1) 

The nature of the curvature of the space surrounding a star was studied, for example, in [8 § 100, 

problem 3]. In any case, the curvature of the centrally symmetric space is described by the linear 

element 
2 2 2 2 2 2( sin )rrdl g dr r d d      .                                    (2) 

The value of the metric coefficient rrg  was found by Schwarzschild in two cases [9 § 96]. For 

the empty space surrounding a star, 
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for the interior of a star of constant density, 
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moreover, if the radial coordinate of the star's surface is 1r , then 

3 2
1 /gr r R .                                                         (5) 

This is the condition that the coefficients rrg  (3) and (4) coincide on the surface of the star. 

In both cases 1rrg  . This means that the curvature of space by a star is as follows. The 

distance between two spherical surfaces, the equators of which have lengths 2 r  and 2 ( )r dr  , 

is not equal to dr , as it would be in Euclidean space, but more, namely rrg dr . Therefore, the 

volume of space enclosed between these spherical surfaces is equal to 
24 rrdV r g dr  .                                              (6) 

This means that the volume of space inside a sphere with an equator of length 2 r  is greater 

than the Euclidean value 34 / 3r . This volume is obtained by integrating 

2

0
4

r

rrV r g dr  .                                            (7) 

And if this volume is filled with a substance with density   kg/m3, then the mass of this 

substance in the volume is obtained by integrating 

2

0
4

r

rrM r g dr   .                                           (8) 

Such an integral was considered by Tolman. He called it “the total proper energy (of the liquid 

sphere)” [9 (97.4), (97.10)]: 

0dV ,  
0 xx yy zzdV g g g dxdydz  .                                (9) 

The calculation of the integral (8) for the metric coefficient (4) is presented in [10-12]. We repeat 

it here for the convenience of readers.  

 

3. Mass of a ball of constant density ρ 

According to Einstein's equation (1), 8t

tG   . The component t

tG  is presented in [9 (96.7)] 

23 /t
tG R . So 
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Calculation of the proper mass of the ball using formula (8) or (9) gives the expression 
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If the star is slightly compressed, then 2
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It can be seen that as the compression increases, the mass of the star increases due to the second 

term. We denoted 

2

gr
m 


                                                             (13) 

the initial mass of the initially rarefied cloud when 1r   and the curvature of space is absent. 

So m  is obtained by integration in flat space, without rrg  [8 (100.24)], 

1 12 2

30 0
1

3
4 4

8 2

r r g gr r
m r dr r dr

r
     

                                        (14) 

The increase in mass when compressing is easy to explain. According to (10), as the 

radius of the star 1r  decreases, the matter density increases 3

11/ r . At the same time, the 

volume of the star decreases more slowly than 3

14 / 3r , due to the curvature of space. This is 

taken into account by the metric coefficient 1rrg  . 

The increase in the mass-energy of a star during compression is beyond doubt, since the 

star heats up during gravitational collapse, which corresponds to an increase in the mass of iron 

during heating. Thus, both the calculation and the observation show that the gravitational mass 

defect is positive. This result was published [12]. 

 

4. Conclusion 

We considered the gravitational compression of a star, during which the matter of the star was 

heated, and its mass was grown. Consider now the removal of the baryons of a neutron star to 

infinity. This removal requires mass-energy. But there is nowhere to take this mass from, except 

from the star itself. So when you remove baryons, you have to reduce the mass of the star. The 

mass has to be taken away from the baryons and introduced into the curved Schwarzschild space, 

spending this mass on straightening the space. Therefore, the total mass of baryons after their 

removal turns out to be less than the mass of the neutron star, contrary to the assertion of the 

respected authors. 
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