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Abstract 

In number theory, for very difficult Number theory problems that have been open and 
unsolved for long periods of time it can often be wise to take alternative approaches to 
the problem. There more old unsolved Number Theory problems than most would think. 
The Goldbach's conjecture is one of the oldest and best-known unsolved problems in 
number theory and all of mathematics, it has been unsolved for over 281 years. On 7 
June 1742, the German mathematician Christian Goldbach wrote a letter to Leonhard 
Euler (letter XLIII) in which he proposed the following conjecture: 

Every even integer which is ≥ 4 can be written as the sum of two primes. It also states 
that every even natural number greater than 2 is the sum of two prime numbers. Or 
more specifically, that the "strong" Goldbach Conjecture asserts that all positive even 
integers ≥ 4 can be expressed as the sum of two primes. Two primes (p,q) such that p + 
q = 2n for n a positive integer ≥ 2. 

The conjecture has been shown via computer to hold for all integers less than 4×1018, 
but remains unproven despite enormous effort by many mathematicians over hundreds 
of years. Even the author has spent much effort attempting to solve this conjecture 
using several different direct methods and have come very close but was not able to 
prove the Goldbach Conjecture using any of these direct approaches. All of this effort 
made the author realize how difficult the Goldbach Conjecture is to solve using direct 
approaches, so this made him consider looking for a back door approach, or a work 
around the direct approaches. Any such approach could be different than the Goldbach 
Conjecture, but if it is a different Conjecture must be the equivalent of the Goldbach 
Conjecture, conjecture otherwise it would not solve the Goldbach Conjecture. This is 
exactly what the author has done, an equivalent conjecture has been developed and 
proven, thus solving the Goldbach Conjecture. Therefore, we call this a “back door” 
proof of the Goldbach Conjecture.  

 

Proof: 

Recall that a semiprime is a natural number that is the product of exactly two prime 
numbers. 

An example first few semiprimes are 4, 6, 9, 10, 14, 15, … 

The following proposed Semiprime Equivalent Conjecture is equivalent to the Goldbach 
conjecture. We shall prove so below: 
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Semiprime Equivalent Conjecture: 

For all n ≥ 2, there exists a whole number m such that 0 ≤ m ≤ n-2 and n² - m² is a 
semiprime. 

To help demonstrate that the Semiprime Equivalent Conjecture is equivalent to the 
Goldbach Conjecture we need to prove that n² - m² is a semiprime if and only if n – m 
and n + m are both prime. 

Proof: Since n² - m² = (n - m)(n + m), then it follows that n – m and n + m must also 
both be prime for n² - m² to be semiprime, since n² - m² must be the product of two 
prime numbers to be semiprime. 

Now we will prove the Semiprime Equivalent Conjecture: 

Specifically, we will prove that the Semiprime Equivalent Conjecture is Equivalent 
to the Goldbach Conjecture: 

First, assume the Goldbach conjecture and suppose we are given a whole number n ≥ 
2. We Then by assumption 2n = p + q for some prime numbers p and q. 

Assume without loss of generality we assume that p ≤ q, then by the Semiprime 
Equivalent Conjecture, there exists a whole number m such that 0 ≤ m ≤ n-2 and since 
2n = p + q we can state the following two equations are equivalent using simple algebra: 

• p = n - m 

• q = n + m 

Multiplying both sides of the above two equations yields the following: 

pq = (n - m)(n + m) 

Since (n - m)(n + m) = n² - m² 

Therefore, this implies that n² - m² = (n - m)(n + m) = p⋅ q. 

So, we can conclude that n² - m² is a semiprime since both p and q are prime. 

Conversely, assume the Semiprime Equivalent Conjecture and suppose we are given a 
number 2n with n ≥ 2. We need to show that 2n can be written as a sum of two primes. 

By assumption, we can find a number m with 0 ≤ m ≤ n-2 and n² - m² a semiprime. And 
since n² - m² = (n - m)(n + m) then both (n – m) and (n + m) must be prime numbers but 
then we have 

2n = (n - m) + (n + m), thus 2n must be the sum of two primes. Thus, we have proven 
that the Semiprime Equivalent Conjecture is the equivalent of the Goldbach Conjecture. 
And we have proven that the Goldbach Conjecture is the equivalent of the Semiprime 
Equivalent Conjecture. Thus, this completes the proof of the equivalence of both 
conjectures. We will proceed with a proof of the Semiprime Equivalent Conjecture to 
provide a proof of the Goldbach Conjecture. We have chosen this method because it is 
much simpler to prove the Semiprime Equivalent Conjecture than to attempt a direct 
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proof of the Goldbach Conjecture. However, the result is the same since the Goldbach 
Conjecture will be proven, even though in an indirect method. 

Now we shall proceed to prove the Semiprime Equivalent Conjecture in order to prove 
the Goldbach Conjecture. We will use Fermat’s Factorization Method to prove the 
Semiprime Equivalent Conjecture. Fermat, in a letter to Mersenne around 1643, 
exposed an algorithm to factor odd integers by writing them as a difference of two 
squares. Fermat was responding to a challenge proposed by Mersenne. Fermat and 
Euler contributed much towards developing factorization methods. Our proof using 
Fermat’s Factorization Method is provided below: 

Fermat’s Factorization Method 
Fermat knew that every odd number, x, could be written as the difference of two 
squares (x = n2 – m2).  A proof of this theorem is provided by the author below: 

Proof: Let x be an odd number and re-write x as x = y1y2 with y1 < y2 (y1 can equal 1). 
Since x is odd, y1 and y2 are both odd. Let  n = ½(y1 + y2) and m = ½(y2 – y1). Notice 
that n and m are both integers, since y1 and y2 are both odd. Then y1 = n-m and y2 = 
n+m, so x = y1y2 = (n-m)(n+m) = n2 – m2. Thus, we have proven that  every odd 
number, x,  can be written as the difference of two squares. 

A similar proof is provided, in Lemma 3.9, below from a textbook by the University of 
Sargodha (Reference 2). 

Lemma 3.9:  If n is an odd positive integer, then there is a one-to-one correspondence 
between factorizations of n into two positive integers and differences of two squares that 
equal n. 

Proof:  Let n be an odd positive integer and let n = ab be a factorization of n into two 
positive integers. Then n can be written as the difference of two squares, because 

n = ab = s2 - t2, 

where s = (a+ b)/2 and t = (a - b)/2 are both integers because a and b are both odd. 

Conversely, if n is the difference of two squares, say, n = s2 - t2, then we can factor 

n by noting that n = (s - t)(s + t). 

 

Recall that our Semiprime Equivalent Conjecture states: 

For all n ≥ 2, there exists a whole number m such that 0 ≤ m ≤ n-2 and n² - m² is a 
semiprime. 

However, our proof of Fermat’s Factorization Method proves that: 

Every odd number, x, can be written as the difference of two squares (x = n2 – m2).  

Therefore, n² - m² in our Semiprime Equivalent Conjecture must be odd. However, since 
every prime number other than 2 is odd, then every semiprime number must be odd 
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other than 2p, for any prime number p. However, recall that the Semiprime Equivalent 
Conjecture states: 

For all n ≥ 2, there exists a whole number m such that 0 ≤ m ≤ n-2 and n² - m² is a 
semiprime. 

Also recall, that we have proven that n² - m² is a semiprime if and only if n – m and n + 
m are both prime.  

Therefore, we must also show that n² - m² = 2p, for any prime number p. But we know 
that (n – m) and (n + m) must both prime. 

Therefore, n² - m² = (n – m)(n + m) = 2p.  

Reducing p = (n – m)(n + m)/2, therefore either (n – m) or (n + m) must be divisible by 2, 
since both are prime the only way that either can be divisible by 2 is if one is for one to 
be equal to 2. 

Thus (n – m) = 2 or (n + m) = 2. (n + m) 

If (n – m) = 2 

Thus, n² - m² = (n – m)(n + m) = 2(n + m). However, we know that (n + m) is prime and 
2 is prime, so 2(n + m) is semiprime. Thus, n² - m² is semiprime.  

If (n + m) = 2 

Thus, n² - m² = (n – m)(n + m) = 2(n – m). However, we know that (n - m) is prime and 2 
is prime, so 2(n - m) is semiprime. Thus, n² - m² is semiprime. 

Therefore, we have proven that all semiprime numbers are of form n² - m², thus we 
have proven that the Semiprime Equivalent Conjecture is true for all semiprime 
numbers. Also, since the Semiprime Equivalent Conjecture is equivalent to the 
Goldbach Conjecture, thus we have also proven that the Goldbach Conjecture is true 
for all even numbers (2n). Specifically, we have proven that for every even integer N, 
and N > 2, then N = p + q, where p, and q, are prime numbers. 

Although a direct proof of the Goldbach Conjecture remains unsolved, the Goldbach 
Conjecture now has been unequivocally proven through this “back door” novel approach 
using an equivalent conjecture for a remarkably simple proof. 

We would be remiss not to mention that this proof of the “strong” Goldbach Conjecture 
also implies a proof of the “weak” Goldbach Conjecture. The “weak” Goldbach 
Conjecture, also known as the ternary Goldbach problem, states that every odd number 
greater than 5 can be expressed as the sum of three primes. (A prime may be used 
more than once in the same sum). The Goldbach Conjecture provides that every even 
number greater than 4 is the sum of two odd primes. Adding 3 to each even number 
greater than 4 will produce the odd numbers greater than 7 (and 7 itself is equal to 
2+2+3). Since 3 is prime we have proven the “weak” Goldbach Conjecture with the 
proof of the “strong” Goldbach Conjecture.  
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This is not the first proof of the “weak” Goldbach Conjecture, Harald Helfgott proved the 
weak conjecture before the “strong” Goldbach Conjecture was ever proven. The author 
was not taking credit for its proof, he was merely stating that it has been known since 
Goldbach’s time that a proof of the “strong” Goldbach Conjecture implies a proof of the 
“weak” Goldbach Conjecture.  

 

 

. 
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