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Abstract

We explore the construction of a generalized Dirac equation via the
introduction of the notion of Clifford-valued actions, and which was in-
spired by the work of [1], [2] on the De Donder-Weyl theory formula-
tion of field theory. Crucial in this construction is the evaluation of
the exponentials of multivectors associated with Clifford (hypercomplex)
analysis. Exact matrix solutions (instead of spinors) of the generalized
Dirac equation in D = 2, 3 spacetime dimensions were found. This for-
malism can be extended to curved spacetime backgrounds like it happens
with the Schroedinger-Dirac equation. We conclude by proposing a wave-
functional equation governing the quantum dynamics of branes living in
C-spaces (Clifford spaces), and which is based on the De Donder-Weyl
Hamiltonian formulation of field theory.

Keywords : Quantum Mechanics; Clifford Algebras; Dirac Equation; De
Donder-Weyl theory.

1 Dirac Equation, Exponentials of Multivectors

The 4D Dirac equation, in units of h̄ = c = 1, is

(iγµ∂µ −m )ψ = 0, µ = 0, 1, 2, 3 (1)

where ψ is a Dirac spinor, a column matrix with 4 complex entries. It is well
known among the experts that Dirac spinors are left/right ideal elements of the
complex Clifford Cl(4, C) algebra in 4D. Such left/right ideals of the Clifford
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algebra can be represented by 4 × 4 complex matrices with one, and only one,
non-vanishing column/row, while the remaining three columns/rows are set to
zero.

Inspired by the work of [1], [2] we shall begin to generalize the Dirac equa-
tion (1), firstly, by replacing the spinor ψ with a matrix Ψ defined as Ψ ≡
R e−iSµγ

µ

= R e−iS(
Sµ
S )γµ

, where Sµ is a four-vector extension of the Hamilton-
Jacobi function S and whose norm is S ≡

√
SµSµ. Performing a power series

Taylor expansion and taking into account γµγν = ηµν1+ γ[µν], one arrives at

R e−iSµγ
µ

= R e−iS(
Sµ
S )γµ

= R cos(S) 1 − i γµ (
RSµ

S
) sin(S) (2)

One could extend the above definition of Ψ by writing Ψ = Re−iSMΓM

where
the ΓM ’s span the 24 = 16 matrices 1, γµ, γ[µν], γ[µνσ], γ[µνστ ] associated with
the 16-dim Clifford algebra Cl(4, C). However, one cannot any longer write the
Clifford-valued quantity Ψ in the same functional form displayed by eq-(2)

Ψ = R e−iSMΓM

̸= R cos[
√
SMSM ] 1 −i ΓN (

RSN√
SMSM

) sin[
√
SMSM ] (3)

Since Ψ in (3) is a 4 × 4 matrix it can be expanded in a Clifford basis
as Ψ = ΨMΓM , but now the expressions for the coefficients ΨM ’s are very
complicated functions of R, and the polyvector-valued entries SM associated
with the Clifford-valued S = SMΓM extension of the Hamilton-Jacobi function
S.

The exponentials of generalized multivectors associated with real Clifford
algebras in 3D have been found explicitly by [4] (see also [5]). Given the mul-
tivector in 3D A = a0 + aiei + aijeij + a123I, where I is a pseudo-scalar, its
exponential exp(A) = B is another multivector B = b0 + biei + bijeij + b123I
whose components (coefficients) b0, bi, bij , b123 are explicitly given in terms of
a0, ai, aij , a123. For instance, in the Cl(0, 3) algebra case, the coefficients found
by [4] are given by

b0 =
1

2
ea0

(
ea123 cos(a+) + e−a123 cos(a−)

)
(4a)

b123 =
1

2
ea0

(
ea123 cos(a+) − e−a123 cos(a−)

)
(4b)

b1 =
1

2
ea0

(
ea123 (a1 − a23)

sin(a+)

a+
+ e−a123 (a1 + a23)

sin(a−)

a−

)
(4c)

b2 =
1

2
ea0

(
ea123 (a2 + a13)

sin(a+)

a+
+ e−a123 (a2 − a13)

sin(a−)

a−

)
(4d)

b3 =
1

2
ea0

(
ea123 (a3 − a12)

sin(a+)

a+
+ e−a123 (a3 + a12)

sin(a−)

a−

)
(4e)
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b12 =
1

2
ea0

(
− ea123 (a3 − a12)

sin(a+)

a+
+ e−a123 (a3 + a12)

sin(a−)

a−

)
(4f)

b13 =
1

2
ea0

(
ea123 (a2 + a13)

sin(a+)

a+
− e−a123 (a2 − a13)

sin(a−)

a−

)
(4g)

b23 =
1

2
ea0

(
− ea123 (a1 − a23)

sin(a+)

a+
+ e−a123 (a1 + a23)

sin(a−)

a−

)
(4h)

where

a+ =
√
(a3 − a12)2 + (a2 + a13)2 + (a1 − a23)2 (5a)

a− =
√
(a3 + a12)2 + (a2 − a13)2 + (a1 + a23)2 (5b)

To find the explicit components of the exponential of a multivector associated
with a Clifford algebra in 4D is a more difficult task.

Let us then generalize the Dirac equation (1) by writing the following equa-
tion

(iγµ∂µ)
αβ Ψσ

β −m Ψασ = 0, µ = 0, 1, 2, 3 (6)

where Ψασ is no longer a Dirac spinor but a 4 × 4 complex matrix given by
Ψ = Re−iSµγ

µ

and whose Taylor expansion is provided by eq-(2). Inserting the
expression for Ψ provided by eq-(2) into eq-(6) yields the following 3 equations
after matching the terms multiplying the unit matrix and the γµ, γ[µν] matrices

∂µ(
RSµ

S
sin(S) ) = m R cos(S) (7)

∂µ( R cos(S) ) = − m
RSµ

S
sin(S) (8)

∂µ(
RSν

S
sin(S) ) − ∂ν(

RSµ

S
sin(S) ) = 0 (9)

Eq-(9) is trivially satisfied since from eq-(8) one learns that
RSµ

S sin(S) is a
total derivative given by 1

m∂µ(R cos(S)). Thus one arrives at 1
m∂[µ∂ν](R cos(S)) =

0. After some straightforward algebra by treating the sine and cosine as inde-
pendent functions, one learns from eqs-(7,8) that

Sµ∂µS = mS; ∂µR = 0; ∂µ(
Sµ

S
) =

S∂µS
µ − Sµ∂µS

S2
= 0 (10)

And, finally, from eq-(10) one arrives at a covariant Hamilton-Jacobi equation

∂µS
µ − m = 0 (11)

Eq-(11) can be interpreted as being the “square-root” of the relativistic Hamilton-
Jacobi equation

(∂µS)2 − m2 = 0 ↔ pµ p
µ − m2 = 0, pµ = ∂µS (12)
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where S is the relativistic (scalar) action associated with the massive spin- 12
particle. Note that S ≠ S =

√
SµSµ.

The Dirac equation (1) is commonly referred as the “square-root” of the
Klein-Gordon equation. This is just a simple consequence of
(iγµ∂µ−m)(iγν∂ν+m) = −(∂µ∂

µ+m2) = 0. Therefore, one has found another
realization of the “square-root” procedure of eq-(12) given by the covariant
Hamilton-Jacobi equation (11), after recurring to a vector-valued extension of
the Hamilton-Jacobi function given by Sµ, and to a generalization of the Dirac
equation displayed in eq-(6) where now Ψασ is a 4× 4 complex matrix given by
Ψ = Re−iSµγ

µ

, and not a (column) spinor.
One should emphasize that eq-(6) is not the same as the Dirac-Hestenes

equation (DHE) [7] describing a Dirac-Hestenes spinor field (DHSF), and whose
relation with the relativistic de Broglie-Bohm theory was studied by [8], in order
to show that the classical relativistic Hamilton-Jacobi equation is equivalent to
a DHE satisfied by a particular class of DHSF. This was required in order
to obtain the correct relativistic quantum potential when the Dirac theory is
interpreted as a de Broglie-Bohm theory.

As a reminder, the DHE is obtained from the Dirac equation (1) simply by
replacing iψ → Ψ4×4γ21 and mψ → Ψ4×4γ0, with Ψ4×4 a suitable complex 4×4
matrix and whose entries are given in terms of the 4 complex components of the
Dirac spinor ψ. For more details see [8].

We are going to solve the generalized Dirac equation (6) in D = 2 + 1
dimensions via the substitution Ψ = Re−iSµγ

µ

when R = constant. A trivial
solution of the equations (10) for Sµ, when ηµν = diag(1,−1,−1), is of the form

Sµ = m (t, 0, 0), S = (SµS
µ) = mt ⇒ ∂µS

µ −m = m−m = 0,

S ∂tS = m St = m2t (13)

and it yields the following solution of the generalized Dirac equation (6) in
D = 2 + 1 for the 2× 2 matrix Ψ given by

Ψ = R
(
cos(mt) 1 − i γt sin(mt)

)
(14)

with R constant. A representation of the 2 × 2 matrix γt can be chosen to
have 1,−1 along the diagonals and zero entries off the diagonal. One can verify
explicitly that Ψ given by eq-(14) solves eq-(6).

Under Lorentz transformations one has

S2 = SµS
µ → S′2 = S′

µS
′µ = SµS

µ = S2, γµ Sµ → Λ γµ Sµ Λ−1, (15)

Ψ → Λ Ψ Λ−1, γµ∂µ → Λ γµ∂µ Λ−1 (16)

and one can verify that the generalized Dirac equation is covariant under the
above Lorenz transformations
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iγµ∂µΨ −m Ψ = 0 → Λ ( iγµ∂µΨ −m Ψ ) Λ−1 = 0 (17)

where Λ is a 2 × 2 matrix encoding the Lorenz transformations. mt is not a
Lorentz scalar, mt is just a component of Sµ that happens to coincide with S in
the rest frame of the particle. Under Lorentz transformations Sµ = m(t, 0, 0) →
S′
µ = [S′

t′(t
′, x′, y′);S′

x′(t′, x′, y′);S′
y′(t′, x′, y′)], such that S2 = m2t2 = S′2 =

(S′
t′)

2 − (S′
x′)2 − (S′

y′)2.
Given the particular solution (14), a Lorentz transformation will generate a

family of solutions of the form

Ψ′ = R

(
cos(S′) 1 − i

γ′µS′
µ

S′ sin(S′)

)
=

Λ Ψ Λ−1 = R Λ
(
cos(mt) 1 − i γt sin(mt)

)
Λ−1 (18)

with S′ = S = mt. There are many other solutions different from (14) and
belonging to different orbits of the Lorentz group. For instance, given S2 =
(St)

2 − (Sx)
2 − (Sy)

2 ̸= m2t2, the equations S∂µS = mSµ in the most general
case yield the following differential equations

St∂tSt − Sx∂tSx − Sy∂tSy = m St (19a)

St∂xSt − Sx∂xSx − Sy∂xSy = m Sx (19b)

St∂ySt − Sx∂ySx − Sy∂ySy = m Sy (19c)

and whose nontrivial solutions Sµ = (St(t, x, y), Sx(t, x, y), Sy(t, x, y)) are such
that S2 ̸= m2t2, and are very different from the trivial solution Sµ = (mt, 0, 0).
A Lorentz transformation of the nontrivial solutions will generate another family
of solutions belonging to a different Lorentz orbit from the trivial solution.

Let us find now solutions to eqs-(10) in D = 1+1. From eqs-(10) one learns

∂µS = m
Sµ

S
; ∂µ(

Sµ

S
) = 0 ⇒ ∂µ∂µS = 0 (20)

The solutions for S have the usual (right-moving, left-moving) wave-like form

S = f(x− t) + h(x+ t) ≡ f(u) + h(v), u ≡ x− t, v ≡ x+ t (21)

for arbitrary functions f, h. Consequently, given Sµ = (St, Sx), one has

S2 = [f(u) + h(u)]2 = (St)
2 − (Sx)

2, (22a)

∂tS = − f ′u + h′v = m
St

f(u) + h(v)
; ∂xS = f ′u + h′v = m

Sx

f(u) + h(v)
(22b)

Eliminating St, Sx from eqs-(22b) by recurring to eq-(22a) yields

m2 = (−f ′u + h′v)
2 − (f ′u + h′v)

2 = − 4 f ′u h
′
v (23)
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A trivial solution to eq-(23) is

f(u) = − mu

2
, h(v) =

mv

2
⇒ f = −m

2
(x− t), h =

m

2
(x+ t) ⇒

S = f + h = mt, St = mt, Sx = 0 (24a)

and once again one recovers the same functional form found in eq-(13) in the
rest frame of the particle. There are many other solutions to (23). Since f ′u is
solely a function of u, and h′v is solely a function of v, one learns from eq-(23)
that f ′u = c1 (constant) and h′v = c2 (constant) leading to f(u) = c1u + d1,

h(v) = c2v+ d2, with d1, d2 arbitrary constants and c1, c2 obeying c1c2 = −m2

4 .
Hence, one finds that the most general solution to eqs-(10) in D = 1 + 1 are

S = f + h = c1(x−t) + c2(x+t) + (d1+d2) = x (c1+c2) + t (c2−c1) + d1+d2
(24b)

leading to the most general solutions

St =
c2 − c1
m

[ x (c1 + c2) + t (c2 − c1) + d1 + d2 ]

Sx =
c2 + c1
m

[ x (c1 + c2) + t (c2 − c1) + d1 + d2 ] (24c)

with c1c2 = −m2

4 . One can also verify from eqs-(24c) that ∂µS
µ −m = ∂tSt −

∂xSx −m = 0. And, finally, by inserting the solutions found in eqs-(24b,24c)
directly into eq-(2) (with R constant) one has then found exact solutions to the
generalized Dirac equation (6) in D = 1 + 1 where Ψ is now a 2 × 2 matrix
rather than a column spinor.

The above solutions of the generalized Dirac equation (6) in D = 2 + 1 and
D = 1 + 1 were straightforward via the substitution Ψ = Re−iSµγ

µ

. However,
this is no longer the case when one has the exponential of the full multivector-
valued action

Ψ = R exp ( S01 + Sµγ
µ + Sµνγ

µν + Sµνργ
µνρ ) (25)

after reabsorbing the −i factors into the components S0, Sµ, Sµν , · · · of the
multivector-valued action

The exponential of the multivector associated with the Cl(0, 3) algebra, such
that e21 = e22 = e23 = −1, was explicitly displayed above in eqs-(4,5). The
authors [4] also wrote down the exponentials of the multivectors associated with
the remaining Cl(3, 0), Cl(2, 1), Cl(1, 2) real Clifford algebras Cl(p, q), p + q =
3 in 3D. Below we shall discuss the plausible physical interpretation of the
components S0, Sµ, Sµν , · · · of the multivector-valued action.

Inserting the substitution (25) into eq-(6), and recurring to similar results as
in [4] which determine the functional relations among the components of Ψ =
ΨMΓM and S = SMΓM , leads to a very complicated system of coupled nonlinear
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differential equations for the multivector components S0, Sµ, Sµν , Sµνρ. Nothing
has been gained in this case by making the substitution (25) as compared to
the trivial solutions found above.

2 The Generalized Dirac Equation in C-space
(Clifford space)

Let us proceed in constructing the most general Dirac-like equation in C-space
(Clifford-space).The analog of mass M in C-space is defined in terms of the
on-shell condition of the polyparticle’s polymomentum [10] as follows

p2 + PµP
µ + PµνP

µν + PµνρP
µνρ + PµνρτP

µνρτ = M2 (26)

Powers of a length parameter must be introduced in eq-(26) on dimensional
grounds to match units. In [10] we introduced the Planck scale LP which was
set to 1 in units of G = h̄ = c = 1. A Taylor expansion of the exponential

Ψ(X) = R(X)e−iSJ (X)ΓJ

= ΨIΓ
I determines the explicit (and complicated)

functional form of the expansion coefficients ΨI(R,SJ) in terms of R,SJ as
shown in eqs-(4,5). This requires using the explicit formulae for the Clifford ge-
ometric products [9] of the Γ’s; i.e. ΓIΓJ = f IJKΓK . These geometric products
(expressed in terms of commutators and anti-commutators) [9] are very useful
in finding solutions to the most general Dirac-like equation in C-space given by

i ΓI ∂

∂XI
Ψ − MΨ = 0. I = 1, 2, 3, · · · , 2D (27)

Upon decomposing Ψ in the form Ψ(XI) = ΨJ(X
I)ΓJ , inserting it into eq-(27),

and recurring to the geometric products of the Clifford algebra generators, yields
the following 2D equations corresponding to the 2D dimensions of the Clifford
algebra in D-dim

i f IJK
∂ΨJ

∂XI
= M ΨK , I, J,K = 1, 2, 3, · · · , 2D (28)

After solving the 2D equations (28) for the 2D functions ΨJ(X
I) of the multi-

vector coordinates X = XIΓI , one can go back to the expressions relating the
ΨJ components in terms of the SJ components (as indicated by eqs-(4,5), for
example), and implicitly establish the solutions for the multivector components
SJ(X

I) of the Clifford-valued action S = SJΓ
J .

Note that one has 2D equations (28) for 1+2D functions after adding R(X) to
the 2D components SK(X) of the Clifford-valued action S = SKΓK . This issue
can be easily resolved in the complex Clifford algebra case simply by absorbing
R into a re-definition of the scalar part of the action S0. One simply rewrites
Re−iS0 = elnR−iS0 ≡ e−iS′

0 , where S′
0 is now complex. Therefore, effectively

one ends up with 2D equations corresponding to 2D unknowns S′
0, Sµ, Sµν , · · ·.
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Earlier on, we were able to derive in the simplest case that ∂µS
µ −m = 0

in eq-(11). The natural extension of this relation (in the most general case) in
C-space is ∂IS

I −M = 0, where I are multivector-valued indices spanning the
full of C-space. To prove the latter relation from eqs-(28), after expressing the
ΨI components in terms of the SI components, is a very difficult task due to
the complexity of these relations, as displayed by eqs-(4,5), for example. This
is beyond the scope of this work.

Bohm’s introduction of his quantum potential Q ∼ ∇2√ρ√
ρ into the classical

non-relativistic Hamilton-Jacobi equation, followed up by the use of the pilot-
wave guide equation (continuity equation) ∂tρ + 1

m∂i(ρ∂
iS) = 0 leads to the

Schroedinger equation via the substitution ψ =
√
ρ e−iS . Is there an anal-

ogy of Bohm’s procedure here ? Namely, given WQ, the analog of a putative
Bohm’s quantum potential (which is to be determined), after including it into
the covariant Hamilton-Jacobi equation in C-space as follows

∂IS
I = M + WQ (29)

and adding the continuity equation1

∂IJ
I = 0, JI ≡ Trace (Ψ† ΓI Ψ), ΓI ≡ 1, γµ, γµ1µ2 , γµ1µ2µ3 , · · · (30)

does this lead to the generalized Dirac equation (27) after making the standard

substitution Ψ(X) = R(X)e−iSI(X)ΓI

?? In other words, can one find a judicious
expression for WQ in terms of Ψ and Ψ† which attains this goal ??

This is a difficult problem for several reasons. Firstly, because one has to
construct the “logarithm” of a multivector in order to express S = SIΓ

I in terms
of Ψ = ΨIΓ

I , which is the inverse operation from obtaining the exponential of
a multivector. Secondly, the expansion S = SIΓ

I is comprised of hermitian and
anti-hermitian matrices, hence Ψ†Ψ ̸= R2 1, as a result of the Baker-Campbell-
Hausdorff formula. Therefore, R cannot be expressed in terms of Ψ and Ψ†.
Therefore, it is highly unlikely that one can recover the generalized Dirac equa-
tion (27) from eqs-(29,30). Note also the difference of eq-(30) involving the
actual matrices Ψ to the case involving a Dirac spinor ψD

∂µJ
µ = 0, Jµ ≡ ψ̄D γµ ψD, ψ̄D ≡ ψ†

Dγ
0 (31)

Eq-(31) is obtained from the Dirac equation and its conjugate as shown in the
standard textbooks.

It remains to find what is the physical significance of the components of
the multivector-valued action S = SMΓM ? Given a Clifford-valued multivector
coordinate X = x1+xµγµ+x

µνγµν+ · · · associated to a polyparticle in C-space
[10], and the polyparticle’s multivector-valued momentum P = p1 + pµγµ +
pµνγµν+ · · ·, the Clifford geometric product PX can be used to define a physical
quantity which has the same characteristics as a multivector-valued action S =

1The trace of Ψ†Ψ is positive definite since the matrix Ψ† is the hermitian adjoint of the
matrix Ψ
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SMΓM . For instance, let us define S ≡ PX, and look at the product pµxνγ
µγν =

pµx
µ1+ 1

2γ
µν(pµxν − pνxµ). The scalar part pµx

µ is the standard phase factor
(with units of action) associated to a plane wave solution to the Klein-Gordon
equation. Whereas the bivector piece includes the orbital angular momentum
(pµxν − pνxµ) associated to the Lorentz generators.

The scalar part of the Clifford geometric product yields

S0 = < P X > = px + pµx
µ + pµνx

µν + · · · (32)

and furnishes the generalization of the plane wave phase factor to the full C-
space. Whereas the higher-grade multivectors in PX will yield the other com-
ponents Sµ, Sµν , Sµνσ, · · · of S in terms of the other combinations of products.

The author [1] pointed out that similar to the Hamiltonian-Jacobi formula-
tion of classical mechanics, an analog can be developed in the De-Donder-Weyl
theory in terms of D Hamilton-Jacobi functions Sµ on the field configura-
tion space and which satisfy the De-Donder-Weyl Hamilton-Jacobi equation
∂µS

µ +HDW = 0, where HDW = pµa∂µϕ
a − L is the De-Donder-Weyl Hamilto-

nian which is a function of the fields ϕa, their polymomenta pµa ≡ (∂L/∂(∂µϕ
a)),

and the space-time coordinates xµ. We find that the DW Hamilton-Jacobi equa-
tion has the same form as ∂IS

I −M = 0 (up to a sign of SI due to our choice

of sign in the phase factor Ψ = Re−iSIΓ
I

). More work is required in order to
explore further analogies with the DW (De Donder-Weyl) formalism.

Our results have been restricted to flat spacetimes. They can be extended
to curved spacetime backgrounds via the introduction of vierbeins eaµ obeying

gµν = eaµe
b
νηab, and which allows to relate the Clifford basis generators in the

tangent space γa to the Clifford basis generators in the curved spacetime γµ =
eaµγa. This procedure allows to construct the Schroedinger-Dirac equation [11]
in curved spacetime backgrounds

( gµν ∇µ ∇ν +
R

4
+m2 ) ΨD = 0 (33)

and which is obtained from “squaring” the covariant Dirac equation after re-
curring to the relation

γµγν ∇µ ∇ν = gµν ∇µ ∇ν + γµν [∇µ,∇ν ]

and where the scalar curvature term R
4 stems from the commutator [∇µ,∇ν ] =

[∂µ + ωµ, ∂ν + ων ] of the covariant derivatives which are defined in terms of the
Clifford-valued spin connection ωµ = ωab

µ γab.
The Schroedinger-Dirac equation was recently revisited by [12]. Despite

that the Schroedinger-Dirac equation is not conformally invariant, there exists
a generalization of the equation that is conformally invariant but which requires
a different conformal transformation of the spinor than the one required by the
Dirac equation. The new conformal factor acquired by the spinor is found to
be a matrix-valued factor [12] obeying a differential equation that involves the
Fock-Ivanenko line element.

9



We conclude by discussing an interesting physical application of this work
in the study of branes in C-spaces [10]. These are characterized by maps from
the multivector-valued world-manifold of the brane embedded into a target C-
space background given by XM (σA). The multivector-valued index in XM

spans the dimension 2D of the target space Clifford algebra Cl(D). Whereas
the multivector-valued index in σA spans the 2d-dim of the world-manifold Clif-
ford algebra Cl(d). There is a natural wave-functional Ψ[XM (σA)] associated
with the C-space brane field configurations. This wave-functional is similar to
the string field Ψ[Xµ(σ1, σ2)] in open and closed strings, where Xµ are the
embedding background target spacetime coordinates and σ1, σ2 are the string
world-sheet coordinates.

This is where the DW formulation of field theory becomes important. In
such DW formulation the spacetime variables xµ also enter into picture, in
addition to the fields ϕa and their polymomenta pµa ≡ (∂L/∂(∂µϕ

a)). Hence,
the DW formalism requires to extend Ψ[XM (σA)] to Ψ[XM (σA), σA], such that
the latter can be interpreted as a probability amplitude for the C-space brane
in the quantum state Ψ to have a field configuration XM (σA) at the point σA.
In other words, Ψ[XM (σA), σA] ≡< XM (σA), σA|Ψ >.

Finally, following similar steps to the work by [1], [2] one can then write a
Dirac-like equation of the form

iΓA ∂

∂σA
Ψ[XM (σA), σA] = ĤDWΨ[XM (σA), σA], A = 1, 2, 3, · · · , 2d (34)

where ĤDW is the operator corresponding to the DW Hamiltonian function and
where we set κ to unity. κ is a constant which is required on dimensional grounds
to match units [1],[2]. Ψ is Clifford-valued Ψ = Ψ01+Ψaγ

a+Ψabγ
ab+ · · · where

the gammas ΓA span the 2d-dimensions of the world-manifold associated with
the Cl(d) algebra of the C-space brane.

In the case of free (non-interacting) branes, eq-(34) is of the form

iΓA ∂

∂σA
Ψ[XM (σA), σA] = − 1

2

δ2 Ψ[XM (σA), σA]

(δXM (σA))2
, A = 1, 2, 3, · · · , 2d (35)

Suffice to say that matters are not that simple due to the complexity of eq-
(35), otherwise the quantization of branes would have been attained long ago.
Introducing brane interactions will complicate matters since one would be re-
quired to introduce a term of the form V [XM (σA)]Ψ into eq-(35) where V is
the potential.

Concluding, we have explored the construction of a generalized Dirac equa-
tion via the introduction of the notion of Clifford-valued actions, and which was
inspired by the work of [1], [2] on the De Donder-Weyl theory formulation of
field theory. Crucial in this construction is the evaluation of the exponentials of
multivectors associated with Clifford (hypercomplex) analysis. Exact matrix
solutions (instead of spinors) of the generalized Dirac equation in D = 2, 3
spacetime dimensions were found. This formalism can be extended to curved
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spacetime backgrounds like it happens with the Schroedinger-Dirac equation.
We finalized by proposing a wave-functional equation governing the quantum
dynamics of branes living in C-spaces, and which was based on the De Donder-
Weyl Hamiltonian formulation of field theory.
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