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I. CONSTRUCTION OF THE METRIC

Solving for the vector field

The theory considered in [1] is

Sbulk =
1

8πℓ2p
∫ d4x

√
−g (R − 3

2
(∂χ)2 + 6

ℓ2
coshχ) − 1

8π
∫ d4x

√
−g (1

6
v3e3χF 2

0 −
1

2
veχF 2

1 ) , (1)

which we can further truncate for our purposes to

Sbulk =
1

8πℓ2p
∫ d4x

√
−g (R + 6

ℓ2
− 2πℓ2pσ(z)FµνF

µν) . (2)

In the presence of a point charge, the full action becomes

S = Sbulk +Q∫ Aµdx
µ. (3)

Assume that the point charge is located at (z, x, y) = (zp,0,0), where x and y (or the polar r and θ) parametrise the

flat boundary space. By assuming the background

ds2 = −gtt(z)dt2 + gzz(z)dz2 + gxx(z) (dx2 + dy2) , (4)

and the electrostatic field with Ax = Ay = 0, the Maxwell’s equations give

∂z (
σgxx√
gzzgtt

∂zAt) + σ
√

gzz
gtt
(∂2

x + ∂2
y)At = Qδ(z − zp)δ(x)δ(y). (5)

To find the solution for the vector field we follow [1] and use the WKB approximation

At(z, x, y) = ∫
d2k

(2π)2
e−ik⃗⋅x⃗ exp{ 1

λ
(W0 + λW1 +⋯)} , (6)

∂z → λ∂z, (7)

with λ≪ 1. The solution is

At(z, x, y) = ζ(z)−1/4 ∫
d2k

(2π)2
e−ik⃗⋅x⃗ (cke∣k⃗∣v(z) + dke−∣k⃗∣v(z)) , (8)

where

ζ = σ2 gxx
gtt

, γ = gzz
gxx

, v = ∫ dz
√
γ(z). (9)

The momentum-dependent constants can be fixed by matching the near-boundary and near-horizon geometries, as

was done in [1].
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Solving for the metric backreaction

The Einstein’s equation derived from is

Rµν −
1

2
gµνR +Λgµν = κ2

4σ (FµρF
ρ

ν −
1

4
gµνFρσF

ρσ) , (10)

where Λ = −3/ℓ2 and the four-dimensional Newton’s constant is κ2
4 = 4πℓ2p. We will set ℓ = 1.

In solving for At, the background was considered as fixed. Hence, we can state that At is of order ϵ, where ϵ≪ 1.

Now, to look for a backreaction of the metric to At, we assume that the metric can be written as

ds2 = − (gtt + ϵ2htt)dt2 + (gzz + ϵ2hzz)dz2 + 2ϵ2hzrdzdr + (gxx + ϵ2hrr)dr2 + r2 (gxx + ϵ2hθθ)dθ2. (11)

The metric will be rotationally symmetric around the point charge’s spatial origin at r = 0. As a further simplification,

we introduce a WKB parameter for slowly varying spatial dependence of the metric, alongside slowly varying radial

bulk dependence,

∂z → λ∂z, ∂r → µ∂r, (12)

with λ,µ≪ 1. Next, we expand the Einstein’s equation to orders {O(ϵ2), O(λ0), O(µ2)}, {O(ϵ2), O(λ), O(µ)} and
{O(ϵ2), O(λ2), O(µ0)}, [i.e. this is the same as setting µ = λ and expanding to O(λ2)], giving us a very simple

solution

htt =
κ2
4σ

6gzzgxx
[gxx (∂zAt)2 + gzz (∂rAt)2] , (13)

hzz =
κ2
4σ

6gttgxx
[gxx (∂zAt)2 − gzz (∂rAt)2] , (14)

hzr =
κ2
4σ

3gtt
(∂zAt) (∂rAt) , (15)

hrr = −
κ2
4σ

6gttgzz
[gxx (∂zAt)2 − gzz (∂rAt)2] , (16)

hθθ = −
κ2
4σ

6gttgzz
[gxx (∂zAt)2 + gzz (∂rAt)2] , (17)

where the four-dimensional Newton’s constant naturally suppresses the hµν terms in comparison to gµν .

What will be more useful for future is to solve for the metric in Cartesian form, which gives us

ds2 = − (gtt + ϵ2htt)dt2 + (gzz + ϵ2hzz)dz2 + (gxx + ϵ2hxx)dx2 + (gxx + ϵ2hyy)dy2

+ 2ϵ2hzxdzdx + 2ϵ2hzydzdy + 2ϵ2hxydxdy, (18)

with

htt =
κ2
4σ

6gxxgzz
[gzz ((∂xAt)2 + (∂yAt)2) + gxx (∂zAt)2] , (19)

hzz = −
κ2
4σ

6gttgxx
[gzz ((∂xAt)2 + (∂yAt)2) − gxx (∂zAt)2] , (20)

hxx =
κ2
4σ

6gttgzz
[gzz ((∂xAt)2 − (∂yAt)2) − gxx (∂zAt)2] , (21)

hyy =
κ2
4σ

6gttgzz
[gzz ((∂yAt)2 − (∂xAt)2) − gxx (∂zAt)2] , (22)

hzx =
κ2
4σ

3gtt
∂zAt∂xAt, (23)

hzy =
κ2
4σ

3gtt
∂zAt∂yAt, (24)

hxy =
κ2
4σ

3gtt
∂xAt∂yAt. (25)
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A charge near AdS infinity

All bulk geometries of (present) interest are asymptotically AdS with gtt = gzz = gxx = 1/z2. For simplicity, we will

consider σ(z) = σ. The relevant black hole solution in such as setup (with the scalar χ = 0) is the AdS-RN4 black

hole. An electric charge placed far from the horizon, zp ≪ zh then induces an electric field with an approximate form

of an electric charge in pure AdS,

At = q
⎛
⎝

1√
(z − zp)2 + x2 + y2

− 1√
(z + zp)2 + x2 + y2

⎞
⎠
. (26)

[Precise value of q to be fixed later] Near the boundary, for z ≲ zp ≪ zh, the metric becomes

ds2 = − (f(z)
z2
+ (x2 + y2)h(z, x, y))dt2 +

⎛
⎝

1

z2f(z)
−
(x2 + y2)h(z, x, y)

f(z)2
⎞
⎠
dz2

+
⎛
⎝
1

z2
+
(x2 − y2)h(z, x, y)

f(z)
⎞
⎠
dx2 +

⎛
⎝
1

z2
+
(y2 − x2)h(z, x, y)

f(z)
⎞
⎠
dy2 + 22xyh(z, x, y)

f(z)
dxdy, (27)

with

h(z, x, y) = 1

6
κ2
4σq

2z2
⎡⎢⎢⎢⎢⎣

1

((z − zp)2 + x2 + y2)3/2
− 1

((z + zp)2 + x2 + y2)3/2

⎤⎥⎥⎥⎥⎦

2

(28)

and the AdS-RN4 emblackening factor

f(z) = 1 −M ( z

zh
)
3

+Q2
BH (

z

zh
)
4

. (29)

Now, the point charge correction to the background can be re-summed into the emblackening factor, giving

ds2 = − f̄(z, x, y)
z2

dt2 + 1

z2f̄(z, x, y)
dz2 +

⎛
⎝
1

z2
+
(x2 − y2)h(z, x, y)

f(z)
⎞
⎠
dx2

+
⎛
⎝
1

z2
+
(y2 − x2)h(z, x, y)

f(z)
⎞
⎠
dy2 + 22xyh(z, x, y)

f(z)
dxdy, (30)

with

f̄(z, x, y) = 1 −M ( z

zh
)
3

+Q2
BH (

z

zh
)
4

+
κ2
4σq

2z4h
6

(x2 + y2)( z

zh
)
4 ⎡⎢⎢⎢⎢⎣

1

((z − zp)2 + x2 + y2)3/2
− 1

((z + zp)2 + x2 + y2)3/2

⎤⎥⎥⎥⎥⎦

2

.

(31)

The full metric for a charge in a black brane geometry

The next step is to find the metric backreaction to the point charge in the full black brane geometry with the metric

stated in Eq. (4). It was found in [1] that the vector field in such a geometry is

A
(±)

t (z, k) = ζ(z)
−1/4 (c(±)k e∣k⃗∣v(z) + d(±)k e−∣k⃗∣v(z)) , (32)

where (+) stands for the quantities in the region of 0 ≤ z ≤ zp and (−) stands for the zp ≤ z ≤ zh region, with

v(+) = ∫
z

0
dz
√
γ(z), v(−) = ∫

zh

z
dz
√
γ(z). (33)
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Let us begin by evaluating the vector field in the (+) region, where

A
(+)

t = Q

(2π)2ζ1/4p ζ1/4(z)
∫

2π

0
dθ∫

∞

0
dkke−ikr cos θ

sinh (kv(+)h − kv(+)p ) sinh (kv(+)(z))

k sinh (kv(+)h )
. (34)

Performing first the integral over θ, we get the expression

A
(+)

t = Q

(2π)ζ1/4p ζ1/4(z)
∫
∞

0
dkkJ0(kr)

sinh (kv(+)h − kv(+)p ) sinh (kv(+)(z))

k sinh (kv(+)h )
, (35)

which is in fact the Hankel transform of sinh (kv(+)h − kv(+)p ) sinh (kv(+)(z)) /k sinh (kv(+)h ). In order to perform the

integral transform, we assume that e−kvh ≪ 1 and expand the integrand in this quantity, finding

A
(+)

t = Q

2πζ
1/4
p ζ1/4(z)

∫
∞

0
dk

kJ0(kr)
2k

⎡⎢⎢⎢⎣
e
−k(v(+)p −v(+)(z)) − e−k(v

(+)

p +v(+)(z)) − ∑
m1,m2=±1

m1m2

∞

∑
n=1

e
−k(2nv

(+)

h
+m1v

(+)

p +m2v
(+)
(z))
⎤⎥⎥⎥⎦
,

(36)

which leads to,

A
(+)

t = Q

4πζ
1/4
p ζ1/4(z)

∫
∞

0
dk

kJ0(kr)
k

∞

∑
n=0

[e−k(v
(+)

p −v(+)(z)+2nv
(+)

h
) − e−k(v

(+)

p +v(+)(z)+2nv
(+)

h
)

−e+k(v
(+)

p +v(+)(z)−2(n+1)v
(+)

h
) + e+k(v

(+)

p −v(+)(z)−2(n+1)v
(+)

h
)] . (37)

By noting that all exponential functions have the form e−ka with a ≥ 0, we can find the full expression for the vector

field in the region of 0 ≤ z ≤ zp,

A
(+)

t = Q

4πζ
1/4
p ζ1/4(z)

∞

∑
n=0

⎡⎢⎢⎢⎢⎢⎢⎣

1
√
(v(+)p − v(+)(z) + 2nv(+)h )

2
+ x2 + y2

− 1
√
(v(+)p + v(+)(z) + 2nv(+)h )

2
+ x2 + y2

− 1
√
(v(+)p + v(+)(z) − 2(n + 1)v(+)h )

2
+ x2 + y2

+ 1
√
(v(+)p − v(+)(z) − 2(n + 1)v(+)h )

2
+ x2 + y2

⎤⎥⎥⎥⎥⎥⎥⎦

. (38)

Next we solve for the vector field in the zp ≤ z ≤ zh region where

A
(−)

t = Q

(2π)2ζ1/4p ζ1/4(z)
∫

2π

0
dθ∫

∞

0
dkke−ikr cos θ

e−kv
(+)

h

k

⎡⎢⎢⎢⎢⎢⎣
ekv

(+)

p −
sinh (kv(+)h − kv(+)p )

sinh (kv(+)h )

⎤⎥⎥⎥⎥⎥⎦
sinh (kv(−)(z)) (39)

= Q

2πζ
1/4
p ζ1/4(z)

∞

∑
n=0

∑
m1,m2=±1

m1m2 ∫
∞

0
dk

kJ0(kr)
2k

e
−k((2n+1)v

(+)

h
+m1v

(+)

p +m2v
(−)
(z))

(40)

= Q

4πζ
1/4
p ζ1/4(z)

∞

∑
n=0

∑
m1,m2=±1

m1m2
1

√
((2n + 1)v(+)h +m1v

(+)

p +m2v(−)(z))
2
+ x2 + y2

(41)

= Q

4πζ
1/4
p ζ1/4(z)

∞

∑
n=0

∑
mp,h=±1

mp√
(v(−)(z) +mpv

(+)

p + (2n + 1)mhv
(+)

h )
2
+ x2 + y2

(42)

= Q

4πζ
1/4
p ζ1/4(z)

∞

∑
n=0

∑
mp,h=±1

mp√
(v(+)(z) −mpv

(+)

p − 2nmhv
(+)

h − (mh + 1) v(+)h )
2
+ x2 + y2

, (43)
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where we have used the identity v(+)(z) + v(−)(z) = v(+)h in going to the last line. Hence, we find

A
(−)

t = Q

4πζ
1/4
p ζ1/4(z)

∞

∑
n=0

⎡⎢⎢⎢⎢⎢⎢⎣

1
√
(v(+)(z) − v(+)p + 2nv(+)h )

2
+ x2 + y2

− 1
√
(v(+)p + v(+)(z) + 2nv(+)h )

2
+ x2 + y2

− 1
√
(v(+)p + v(+)(z) − 2(n + 1)v(+)h )

2
+ x2 + y2

+ 1
√
(v(+)(z) − v(+)p − 2(n + 1)v(+)h )

2
+ x2 + y2

⎤⎥⎥⎥⎥⎥⎥⎦

. (44)

By comparing Eqs. (37) and (44) we see that the expression differ only in the signs in front of the difference

v(+)(z) − v(+)p . This comes from the fact that v(+) ≤ v(+)p in the (+) region and v(+) ≥ v(+)p in the (−) region. Clearly

both results match at z = zp. By defining all quantities with the index (+) as ones without any (±) index, i.e.

v(z) ≡ v(+)(z) = ∫
z

0
dz′

¿
ÁÁÀ gzz(z′)

gxx(z′)
, vp ≡ v(zp), vh ≡ v(zh), (45)

we can write the final expression for the vector field valid throughout the entire bulk geometry, 0 ≤ z ≤ zh as

At(z, x, y) =
Q

4πζ
1/4
p ζ1/4(z)

∞

∑
n=0

⎡⎢⎢⎢⎢⎢⎣

1
√
(∣vp − v(z)∣ + 2nvh)2 + x2 + y2

− 1
√
(vp + v(z) + 2nvh)2 + x2 + y2

− 1
√
(vp + v(z) − 2(n + 1)vh)2 + x2 + y2

+ 1
√
(∣vp − v(z)∣ − 2(n + 1)vh)2 + x2 + y2

⎤⎥⎥⎥⎥⎥⎦
. (46)

As a further check on this result, we see that by taking the limit of vh →∞, only the first two terms at n = 0 can

contribute. Hence, we recover the pure AdS result.

Multiple charges

We are interested in introducing multiple charges into the black brane geometry. Since Maxwell’s equations are

linear, we can simply add the various vector fields corresponding to a set of N point charges of charge Qi placed at

(z1, x1, y1), . . . (zN , xN , yN). Similarly, we define vp,i = v(zi). The total vector field is then

At(z, x, y) =
1

4πζ1/4(z)

N

∑
i=1

Qi

ζ
1/4
p,i

⎡⎢⎢⎢⎢⎢⎣

∞

∑
n=0

⎡⎢⎢⎢⎢⎢⎣

1
√
(∣vp,i − v(z)∣ + 2nvh)2 + (xi − x)2 + (yi − y)2

− 1
√
(vp,i + v(z) + 2nvh)2 + (xi − x)2 + (yi − y)2

− 1
√
(vp,i + v(z) − 2(n + 1)vh)2 + (xi − x)2 + (yi − y)2

+ 1
√
(∣vp,i − v(z)∣ − 2(n + 1)vh)2 + (xi − x)2 + (yi − y)2

⎤⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎦
. (47)

The final result for the metric, including the leading-order WKB backreaction, is then, as above,

ds2 = − (gtt + htt)dt2 + (gzz + hzz)dz2 + (gxx + hxx)dx2 + (gxx + hyy)dy2 + 2hxydxdy, (48)
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with

htt =
κ2
4σ

6gxx
[(∂xAt)2 + (∂yAt)2] , (49)

hzz = −
κ2
4σgzz

6gttgxx
[(∂xAt)2 + (∂yAt)2] , (50)

hxx =
κ2
4σ

6gtt
[(∂xAt)2 − (∂yAt)2] , (51)

hyy =
κ2
4σ

6gtt
[(∂yAt)2 − (∂xAt)2] , (52)

hxy =
κ2
4σ

3gtt
∂xAt∂yAt. (53)

II. CHARGE DIFFUSION IN THE PRESENCE OF A SINGLE CHARGE

In this section we compute the charge diffusion in the background geometry with a single charge. The vector field,

as a result of a single charge, is

At(z, r) =
Q

4πζ
1/4
p ζ1/4(z)

∞

∑
n=0

⎡⎢⎢⎢⎢⎢⎣

1
√
(∣vp − v(z)∣ + 2nvh)2 + r2

− 1
√
(vp + v(z) + 2nvh)2 + r2

− 1
√
(vp + v(z) − 2(n + 1)vh)2 + r2

+ 1
√
(∣vp − v(z)∣ − 2(n + 1)vh)2 + r2

⎤⎥⎥⎥⎥⎥⎦
, (54)

or in terms of the Fourier space momentum,

At =
Q

4πζ
1/4
p ζ1/4(z)

∫
∞

0
dkJ0(kr)

∞

∑
n=0

[e−k(∣vp−v(z)∣+2nvh) − e−k(vp+v(z)+2nvh)

−e+k(vp+v(z)−2(n+1)vh) + e+k(∣vp−v(z)∣−2(n+1)vh)] . (55)

The metric has the form

ds2 = − (gtt + htt)dt2 + (gzz + hzz)dz2 + 2hzrdzdr + (gxx + hrr)dr2 + r2 (gxx + hθθ)dθ2, (56)

where hµν are all proportional to O(A2
0), hence hµν ∝ ϵ2. We will use

gtt =
f(z)
z2

, gzz =
1

z2f(z)
, gxx =

1

z2
. (57)

To find non-trivial effects of hµν on charge diffusion, we need to use the following scaling of the perturbations of the

vector field,

ϵAµ → ϵAµ + ϵ3aµ, (58)

where we will use the radial gauge, az = 0. Note also that Ai = 0 and only At ≠ 0. We can then use the Maxwell’s

equation

∇µF
µν = 0, (59)

expanded to O(λ3) in the WKB expansion, with µ = λ to find the fluctuation equations for at and ar,

rf2∂2
zat + rf∂2

rat + f∂rat − rf∂t∂rar − f∂tar =
1

3
κ2
4σz

4 (∂rAt) [(∂rAt)2 + f (∂zAt)2] , (60)

r∂t∂zat − f∂r (r∂zar) = 0, (61)

∂t∂rat − ∂2
t ar + f2∂2

zar + f∂zf∂zar = 0. (62)
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Now, this is a coupled set of non-homogeneous differential equations. To find the solution, let us write

at = e−iωtJ0(kr)at(z) + αt(t, z, r), (63)

ar = e−iωtJ1(kr)ar(z) + αr(t, z, r), (64)

where at and ar will solve the homogeneous part of the linear differential equations. Furthermore, we can define a

gauge-invariant variable

Z = kat − iωar, (65)

which enables us to rewrite the homogeneous part of the system in terms of a single differential equation

∂2
zZ +

ω2∂zf

f (ω2 − k2f)
∂zZ +

ω2 − k2f
f2

Z. (66)

The solution has a standard hydrodynamic expansion in ω and k2 and a diffusive quasi-normal mode in the longitudinal

direction outwards from the point charge at r = 0.
Let us now move on to finding the solutions for the non-homogeneous αt and αr functions. By looking at equation

(60), we can first analyse the time dependence of αt and αr. Since the right-hand-side has no time dependence, it is

clear that αt cannot be time-dependent unless it exactly satisfies rf2∂2
zαt + rf∂2

rαt + f∂rαt = 0. Let us assume that

αt does indeed satisfy this equation. We then have to solve

−rf∂t∂rαr − f∂tαr =
1

3
κ2
4σz

4 (∂rAt) [(∂rAt)2 + f (∂zAt)2] , (67)

which could be done with αr linear in t. Eq. (61) would the imply that

αr =
tβ(z)
r

, (68)

which is inconsistent with Eq. (60) because this solution makes the left-hand-side vanish identically. This contradiction

leads us to conclude that αt has no time dependence.

Now, let us assume that αr has non-trivial time dependence. Then, according to Eq. (60), it must be true that

∂t∂r (rαr) = 0, (69)

which can be solved by

αr =
β(t, z)

r
. (70)

This expression also automatically satisfies Eq. (61). The remaining equation, Eq. (62) becomes

f2∂2
zβ + f∂zf∂zβ − ∂2

t β = 0, (71)

which implies that β(t, z) = e−iωtγ(z), i.e.

∂2
zγ +

∂zf

f
∂zγ +

ω2

f2
γ = 0. (72)

The function γ has a hydrodynamical expansion in ω and we can impose in-falling boundary conditions on its near-

horizon behaviour. Hence,

αr(t, z, r) = Cr
e−iωt

r
(1 − z

zh
)
−iw/2

[1 +wγ1(z) +O (ω2)] , (73)

where w = ω/2πT . Of course, Eq. (72) is exactly the same as Eq. (66) with k = 0. The main difference is the 1/r
dependence of αr. We also note that Cr is an arbitrary constant, so we could just set Cr = 0.

What remains to be solved is a very complicated differential equation

rf2∂2
zαt + rf∂2

rαt + f∂rαt =
1

3
z4 (∂rAt) [(∂rAt)2 + f (∂zAt)2] . (74)

By examining the right-hand-side, we see that it vanishes at z = 0 but it has a sharp peak at r = 0 and z = zp, i.e. at
the point charge. If we keep Cr ≠ 0 then ar diverges at r = 0.
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III. SOME IDENTITIES OF POTENTIAL USE

We can expand the “bracketed” part of the integrand in a Taylor series in small k, finding

At =
Q

4πζ
1/4
p ζ1/4(z)

∫
∞

0
dkk2J0(kr) [( ∣vp − v(z)∣ − vp − v(z))( ∣vp − v(z)∣ + vp + v(z) − 2vh) +O(k)], (75)

and finally

At =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Q

πζ
1/4
p ζ1/4(z)

v(z) (vh − vp) ∫
∞

0 dk (k2 + . . .)J0(kr), 0 ≤ v(z) ≤ vp,
Q

πζ
1/4
p ζ1/4(z)

vp (vh − v(z)) ∫
∞

0 dk (k2 + . . .)J0(kr), vp ≤ v(z) ≤ vh.
(76)

For convenience, we define

At ≡ At(z)∫
∞

0
dk (k2 + . . .)J0(kr), (77)

which gives

∂rAt = −At(z)∫
∞

0
dk (k3 + . . .)J1(kr). (78)

Now, an inspection of plots (and eventually a more rigorous argument) shows that the dominant part of the At

integral comes from the small k region. Similarly, this is the case for ∂rAt unless v(z) is close to vp. Let as assume

that v(z) is not close to vp. It is then reasonable to introduce a small dimensionless cut-off kr ≤ Λ≪ 1, so that

At ≈
At(z)Λ3

3 r3
, ∂rAt ≈ −

At(z)Λ5

10 r4
. (79)

A useful combination is then

(∂rAt)2 + f(z) (∂zAt)2 ≈
f(z) (∂zAt)2Λ6

9 r6
+ A

2
tΛ

10

100 r8
(80)
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IV. NOTES

The spectrum has to be discrete in order for the system to localise.
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