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In This Paper 

In this paper, two nuclear wave equations are derived for the nucleus of the Aluminum atom: 

• A nuclear wave equation from the shells’ self-oscillations 

• A nuclear interference wave equation by applying an external wave 

Having better knowledge about atomic nucleus dynamics may give us additional information which 

could be useful for experimental purposes. 

 

 

Abstract 
Some efforts have been made to prove negative mass behavior through some experiments 

performed in mechanics [1], and other disciplines [9], as well as some theories in electrostatics 

[2,3,4,5,6,7,8], but I haven’t found research about similar effects in atomic level, where the most 

elementary mass given by the atomic nucleus is to be found. 

• Is the second Newton’s law still valid with negative mass? 

• What could happen if we make the atom behave in a negative mass regime? 

• Is the negative refractive index related to negative mass? 

• Are we able to control the magnitude of mass? 

• Are we able to control the sign of mass? 

The answers to these questions are given through this series of papers, with results that are 

coincident with experimental data, except for the negative mass regime. Experiments must be 

done to confirm or invalidate the theory developed in these articles. Needless to say, if 

experiments validate this theory, then a significant change in mankind is going to happen. In that 

case, I strongly ask scientists to cooperate by making use of the derived technologies for good 

and refrain from doing it for evil. 

https://physics-answers.com/
mailto:infobb20@gmail.com
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Introduction 
The theory presented in these papers, as described in Part-1, is based on three fundamental 

aspects that have proved to be extremely effective to describe physical phenomena and predicting 

results that agree with experimental data [10, 11, 12]: 

• Spinning Ring Model of Elementary Particles (toroidal ring of continuous charge) 

• New Atomic Model 

• The Universal Electrodynamic Force 

Based on the new atomic model, a shell arrangement of the nuclear particles has been assumed 

in Part 1, as shown in Fig. 1.  

This sandwich configuration keeps the particles very 

tightly bound together. Note that at three shells in from 

the outermost shell, there are always two proton shells 

in a row for the larger nuclides. 

This weak binding allows the outermost sandwich of 

shells to have liquid-like properties and forms the 

proper justification for a Liquid Drop Model of the 

nucleus. 

As we already know, the torus ring model of the 

particles has an associated electric field as well as a 

magnetic field. However, due to the very tight packing 

configuration of the particles, we may safely assume 

that the distance among shells is extremely tiny and 

that the predominant force in the nucleus is of 

electrostatic origin, while the weaker magnetic forces 

will add some contribution to the equilibrium distance 

between each shell. 

As demonstrated in Part 1, mass is an intrinsic property 

of the atomic nucleus. Under natural circumstances, it 

has a constant universal magnitude and is always positive. However, with some proper external 

agents, we might be able to manipulate the intrinsic mass by changing its magnitude and sign. 

 

Derivation of the Nuclear Wave Equation for Shells’ Self-Oscillations  

A nuclear wave equation is derived specifically for Aluminum (Al 13) in accordance with the 

nuclear shell packing proposed by the atomic theory of the Spinning Ring Model of Elementary 

Particles, with a Liquid Drop Model of the nucleus (Fig. 1). 

A more general nuclear wave equation valid for any atomic nucleus might be derived by following 

a similar procedure. I leave this task to other scientists. 

We have assumed that the predominant force in the nucleus is of electrostatic origin, while the 

weaker magnetic forces will add some contribution to the equilibrium distance between each shell. 

Even though magnetic forces are not specifically considered for the derivation of the wave 

equation, the universal force used in the derivation already accounts not only for static but also for 

dynamic electric and magnetic fields. 

We have previously seen in Part-1 that the net force is the sum of 2 terms (Eq. 23): 

 

Figure 1 
Assumed shell arrangement for Aluminum atomic 
nucleus 



4 
 

1. From opposite charges’ interactions 

2. From equal charges’ interactions 

      𝐹⃗𝑛𝑒𝑡 = −
378𝑘 𝑞2

𝑟𝑒𝑝
2 (𝑡)

(1 −
𝑣𝑒𝑝

2 (𝑡)

𝑐2 +
𝑣𝑒𝑝

2 (𝑡)𝑟𝑒𝑝(𝑡)𝑎𝑒𝑝(𝑡)

𝑐4 +
𝑣𝑒𝑝

4 (𝑡)

𝑐4 +
2𝑟𝑒𝑝(𝑡)𝑎𝑒𝑝(𝑡)

𝑐2 ) 𝑟̂ +
2279.035793𝑘 𝑞2𝑟̂

𝑟𝑛
2       (1) 

Let's define the charge factor for opposite charges and equal charges from the interaction of 

Coulomb forces: 

𝑁𝑜 = 378   (charge factor for opposite sign charges, from Coulomb force interaction) 

𝑁𝑠 = 312   (charge factor for equal sign charges, from Coulomb force interaction) 

Let's define the average constant distance among shells as: 

𝜂𝑟𝑛  (= 0.37𝑟𝑛) 

Then, we can write the force as 

𝐹⃗𝑛𝑒𝑡 = (−
𝑁𝑜𝑘 𝑞2(1−

𝑣𝑒𝑝(𝑡)2

𝑐2 +
𝑣𝑒𝑝(𝑡)2𝑟𝑒𝑝(𝑡)𝑎𝑒𝑝(𝑡)

𝑐4 +
𝑣𝑒𝑝(𝑡)4

𝑐4 +
2𝑟𝑒𝑝(𝑡)𝑎𝑒𝑝(𝑡)

𝑐2 )

𝑟𝑒𝑝(𝑡)2
+

𝑁𝑠𝑘 𝑞2

η2𝑟𝑛
2 ) 𝑟̂      (2) 

By having a closer look at the force, we see that the two terms are no other than a dynamic 

electric field, and a static electric field. Therefore, the net force can be written as 

𝐹⃗𝑛𝑒𝑡 = (−𝑞𝑁𝑜𝐸𝑜(𝑟, 𝑡) + 𝑞𝑁𝑠𝐸𝑠) 𝑟̂           (3) 

Where: 

𝐸𝑜
⃗⃗⃗⃗⃗(𝑟, 𝑡) =

𝑘𝑞(1−
𝑣𝑒𝑝(𝑡)2

𝑐2 +
𝑣𝑒𝑝(𝑡)2𝑟𝑒𝑝(𝑡)𝑎𝑒𝑝(𝑡)

𝑐4 +
𝑣𝑒𝑝(𝑡)4

𝑐4 +
2𝑟𝑒𝑝(𝑡)𝑎𝑒𝑝(𝑡)

𝑐2 ) 𝑟̂

𝑟𝑒𝑝(𝑡)2
        (4) 

𝐸⃗⃗𝑠 =
𝑘𝑞

η2𝑟𝑛
2 𝑟̂  (5) 

Recall that the unit vector 𝑟̂ is a function of time, i.e., 𝑟̂(𝑡). We have to take this into account when 

we take derivatives with respect to time. To simplify the notation, in most cases we simply write it 

as 𝑟̂. 

The total derivative of the net force given in Eq. 3 is: 

𝑑𝐹⃗𝑛𝑒𝑡 = 𝑟̂𝑞𝑁𝑠𝑑𝐸𝑠 − 𝑟̂𝑞𝑁𝑜 (
∂

∂𝑟
𝐸𝑜(𝑟, 𝑡)) 𝑑𝑟 − 𝑟̂𝑞𝑁𝑜 (

∂

∂𝑡
𝐸𝑜(𝑟, 𝑡)) 𝑑𝑡 + (−𝑞𝑁𝑜𝐸𝑜(𝑟, 𝑡) + 𝑞𝑁𝑠𝐸𝑠) 𝑑𝑟̂     (6) 

Taking the partial derivative of Eq. 6 with respect to 𝑟 

∂

∂𝑟
(𝐹⃗𝑛𝑒𝑡) = 𝑟̂𝑞𝑁𝑠

𝑑

𝑑𝑟
(𝐸𝑠) − 𝑟̂𝑞𝑁𝑜 (

∂

∂𝑟
𝐸𝑜(𝑟, 𝑡))

𝑑

𝑑𝑟
(𝑟) − 𝑟̂𝑞𝑁𝑜 (

∂

∂𝑡
𝐸𝑜(𝑟, 𝑡))

𝑑

𝑑𝑟
(𝑡) + (−𝑞𝑁𝑜𝐸𝑜(𝑟, 𝑡) +

𝑞𝑁𝑠𝐸𝑠)
𝑑

𝑑𝑟
(𝑟̂)  (7) 

Considering that: 

𝑑

𝑑𝑟
(𝐸𝑠) = 0;   

𝑑

𝑑𝑟
(𝑡) =

1

𝑣
;   

𝑑

𝑑𝑟
(𝑟̂) = 0 

Then, Eq. 7 becomes 
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∂

∂𝑟
(𝐹⃗𝑛𝑒𝑡) = −𝑟q̂𝑁𝑜 (

∂

∂𝑟
𝐸𝑜(𝑟, 𝑡)) − 𝑟̂

𝑞𝑁𝑜(
∂

∂𝑡
𝐸𝑜(𝑟,𝑡))

𝑣(𝑡)
  (8)  

Taking the partial derivative of Eq. 6 with respect to 𝑡 

∂

∂𝑡
(𝐹⃗𝑛𝑒𝑡) = 𝑟̂𝑞𝑁𝑠

𝑑

𝑑𝑡
(𝐸𝑠) − 𝑟̂𝑞𝑁𝑜 (

∂

∂𝑟
𝐸𝑜(𝑟, 𝑡))

𝑑

𝑑𝑡
(𝑟) − 𝑟̂𝑞𝑁𝑜 (

∂

∂𝑡
𝐸𝑜(𝑟, 𝑡))

𝑑

𝑑𝑡
(𝑡) + (−𝑞𝑁𝑜𝐸𝑜(𝑟, 𝑡) +

𝑞𝑁𝑠𝐸𝑠)
𝑑

𝑑𝑡
(𝑟̂)  (9) 

Considering that: 

𝐸⃗⃗𝑠 =
𝑘 𝑞 𝑟̂(𝑡)

η2𝑟𝑛
2 ;  

𝜕

𝜕𝑡
(𝐸⃗⃗𝑠) =

𝑘𝑞ϕ̇(𝑡) sin(θ(𝑡))ϕ̂(𝑡)

η2𝑟𝑛
2 +

𝑘𝑞θ̇(𝑡)θ̂(𝑡)

η2𝑟𝑛
2  

𝑑

𝑑𝑡
(𝑟̂(𝑡)) = θ̇(𝑡)θ̂(𝑡) + ϕ̇(𝑡) sin(θ(𝑡)) ϕ̂(𝑡) 

Shell oscillations occur in the radial direction, coincident with the nucleus radius line. Therefore, 

the electric field has no component in 𝜃 nor in 𝜙̂ directions. That means: 

𝑑

𝑑𝑡
(𝑟̂(𝑡)) = 0   and    

𝑑

𝑑𝑡
(𝐸𝑠) = 0 

Then, Eq. 9 becomes 

∂

∂𝑡
(𝐹⃗𝑛𝑒𝑡) = −𝑟̂𝑞𝑁𝑜 (

∂

∂𝑟
𝐸𝑜(𝑟, 𝑡)) 𝑣(𝑡) − 𝑟̂𝑞𝑁𝑜 (

∂

∂𝑡
𝐸𝑜(𝑟, 𝑡))  (10) 

Now we take the derivative of Eq. (8) with respect to time, which gives 

∂2

∂𝑟 ∂𝑡
(𝐹⃗𝑛𝑒𝑡) = 𝑟̂(𝑡) (−𝑞𝑁𝑜 (

∂2

∂𝑟 ∂𝑡
𝐸𝑜(𝑟, 𝑡)) −

𝑞𝑁𝑜(
∂2

∂𝑡2𝐸𝑜(𝑟,𝑡))

𝑣(𝑡)
+

𝑞𝑁𝑜(
∂

∂𝑡
𝐸𝑜(𝑟,𝑡))𝑣̇(𝑡)

𝑣(𝑡)2
) +

θ̂(𝑡) (−𝑞𝑁𝑜 (
∂

∂𝑟
𝐸𝑜(𝑟, 𝑡)) θ̇(𝑡) −

𝑞𝑁𝑜(
∂

∂𝑡
𝐸𝑜(𝑟,𝑡))θ̇(𝑡)

𝑣(𝑡)
) + ϕ̂(𝑡) (−𝑞𝑁𝑜 (

∂

∂𝑟
𝐸𝑜(𝑟, 𝑡)) ϕ̇(𝑡) sin(θ(𝑡)) −

𝑞𝑁𝑜(
∂

∂𝑡
𝐸𝑜(𝑟,𝑡))ϕ̇(𝑡) sin(θ(𝑡))

𝑣(𝑡)
)  

Since the components in the direction of 𝜃 and 𝜙̂ are zero, the equation is reduced to 

𝜕2

𝜕𝑟𝜕𝑡
(𝐹⃗𝑛𝑒𝑡) = 𝑟̂(𝑡) (−𝑞𝑁𝑜 (

∂2

∂𝑟 ∂𝑡
𝐸𝑜(𝑟, 𝑡)) −

𝑞𝑁𝑜(
∂2

∂𝑡2𝐸𝑜(𝑟,𝑡))

𝑣(𝑡)
+

𝑞𝑁𝑜(
∂

∂𝑡
𝐸𝑜(𝑟,𝑡))𝑎(𝑡)

𝑣(𝑡)2
)  (11) 

Now we take the derivative of Eq. (10) with respect to 𝑟, yielding to 

∂2

∂𝑡 ∂𝑟
(𝐹⃗𝑛𝑒𝑡) = 𝑟̂(𝑡) (−𝑞𝑁𝑜𝑣(𝑡) (

∂2

∂𝑟2
𝐸𝑜(𝑟, 𝑡)) − 𝑞𝑁𝑜 (

∂2

∂𝑟 ∂𝑡
𝐸𝑜(𝑟, 𝑡))) (12) 

By equating Eq. (11) and Eq. (12), we obtain 
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𝑟̂(𝑡) (−𝑞𝑁𝑜 (
∂2

∂𝑟 ∂𝑡
𝐸𝑜(𝑟, 𝑡)) −

𝑞𝑁𝑜(
∂2

∂𝑡2𝐸𝑜(𝑟,𝑡))

𝑣(𝑡)
+

𝑞𝑁𝑜(
∂

∂𝑡
𝐸𝑜(𝑟,𝑡)) 𝑎(𝑡)

𝑣(𝑡)2
) = 𝑟̂(𝑡) (−𝑞𝑁𝑜𝑣(𝑡) (

∂2

∂𝑟2
𝐸𝑜(𝑟, 𝑡)) −

𝑞𝑁𝑜 (
∂2

∂𝑟 ∂𝑡
𝐸𝑜(𝑟, 𝑡)))  

After simplifying, we arrive at our final 

Nuclear wave equation from Shells’ Self-Oscillations 

 

(
∂2

∂𝑡2
𝐸𝑜(𝑟, 𝑡)) − 𝑣𝑒𝑝(𝑡)2 (

∂2

∂𝑟2
𝐸𝑜(𝑟, 𝑡)) −

𝑎𝑒𝑝(𝑡)

𝑣𝑒𝑝(𝑡)
(

∂

∂𝑡
𝐸𝑜(𝑟, 𝑡)) = 0  (13) 

 

This partial differential equation (PDE) is of type hyperbolic, with variable coefficients, whose 

analytical solution involves a certain amount of work. To simplify this work, it will be solved 

numerically with initial-boundary conditions derived from the nuclear shell’s arrangements. 

We can write the nuclear wave equation in a more general form as follows: 

(
∂2

∂𝑡2 𝑓(𝑟, 𝑡)) − 𝑟̇(𝑡)2 (
∂2

∂𝑟2 𝑓(𝑟, 𝑡)) −
𝑟̈(𝑡)

𝑟̇(𝑡)
(

∂

∂𝑡
𝑓(𝑟, 𝑡)) = 0  (14) 

 

The initial-boundary conditions 

Let’s remember the equations of relative displacement, velocity, and acceleration between 

electron-proton shell pairs derived in Part 1, equations (10), (11), and (12): 

𝑟𝑒𝑝(𝑡) = γ ⋅ 𝑟𝑛 + 𝐴𝑒 cos(ω𝑒𝑡) − 𝐴𝑝 cos(ω𝑝𝑡) 

𝑣𝑒𝑝(𝑡) = −𝐴𝑒ω𝑒 sin(ω𝑒𝑡) + 𝐴𝑝ω𝑝 sin(ω𝑝𝑡) 

𝑎𝑒𝑝(𝑡) = −𝐴𝑒ω𝑒
2 cos(ω𝑒𝑡) + 𝐴𝑝ω𝑝

2 cos(ω𝑝𝑡) 

𝛾 ⋅ 𝑟𝑛 = 𝑟𝑠 

Initial conditions 

For 𝑡 = 0 we have: 

𝑟𝑒𝑝(0) = 𝑟𝑠 + 𝐴𝑒 − 𝐴𝑝  = 𝑟𝑠 + 𝑟0  

𝑣𝑒𝑝(0) = 0 

𝑎𝑒𝑝(0) = 𝑎0 

Equation (4) is reduced to 

𝐸(𝑟, 0) = 𝐸0 = −
𝑁𝑜𝑘𝑞(1+

2 𝑎0 (𝑟𝑠+𝑟0)

𝑐2 )

(𝑟𝑠+𝑟0)2
+

𝑁𝑠𝑘𝑞

𝑟𝑠
2   (15) 

You can also verify that the derivative of Eq. (4) with respect to time is zero 

∂

∂𝑡
(𝐸(𝑟, 0)) = 0  (16) 
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Boundary conditions 

For 𝑟𝑒𝑝(𝑡) = 𝑟𝑠 , we have velocity and acceleration equal to zero. Then Eq. (4) is reduced to 

E(𝑟𝑠, 𝑡) = 𝐸𝑟𝑠 = −
𝑘𝑞(𝑁𝑜−𝑁𝑠)

𝑟𝑠
2   (17) 

Similarly, for 𝑟𝑒𝑝(𝑡) = 𝑟𝑛, we have velocity and acceleration equal to zero. Then Eq. (4) becomes 

E(𝑟𝑛, 𝑡) = 𝐸𝑟𝑛 = −
𝑘𝑞(𝑁𝑜γ2−𝑁𝑠)

γ2𝑟𝑛
2   (18) 

Equations (15) to (18) constitute the chosen initial and boundary conditions to obtain the solution 

of the nuclear wave equation for diverse parameter values. 

 

Nuclear Radiation Frequencies from Shells’ Self-Oscillations 
The nuclear wave equation (13) has been numerically solved with the initial-boundary conditions 

(15) to (18). Some graphs of amplitude with respect to time and displacement (snapshots) are 

shown below for the following parameters: 

𝑟𝑛 = 3.5 10−15 [𝑚];     𝐴𝑒 = 2 10−16 [𝑚];    𝐴𝑝 = 10−3𝐴𝑒 [𝑚];   𝑁0 = 378;   𝑁𝑠 = 312 

The graphs of amplitude vs. time correspond to a displacement 𝑟 = 2.5 1015 [𝑚], while the plots of 

amplitude vs. displacement correspond to the nucleus radius for an arbitrary time, taken within the 

allowed time span from the solution. 

 

Fig. 2-3: for these additional parameters: 𝜔𝑒 = 1015[1/𝑠] and 𝜔𝑝 = 1016[1/𝑠], the nuclear radiation 

frequency is 𝑓𝑛 = 1.6 1014 [𝐻𝑧]. 

 

 
Figure 2 

Amplitude vs. time 

 

Figure 3 
Amplitude vs. displacement 

 

 

Figure 4 
Amplitude vs. time 

 

Figure 5 
Amplitude vs. displacement 
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Fig. 4-5: for these additional parameters: 𝜔𝑒 = 1016[1/𝑠] and 𝜔𝑝 = 1015[1/𝑠], the nuclear radiation 

frequency is 𝑓𝑛 ≅ 3.3 1015 [𝐻𝑧]. 

 

Fig. 6-7: for these additional parameters: 𝜔𝑒 = 4 1012[1/𝑠] and 𝜔𝑝 = 7 1011[1/𝑠], the nuclear 

radiation frequency is 𝑓𝑛 = 6.4 1011 [𝐻𝑧]. 

 

 

Fig. 8-9: for these additional parameters: 𝜔𝑒 = 8 1018[1/𝑠] and 𝜔𝑝 = 3 1017[1/𝑠], the nuclear 

radiation frequency is 𝑓𝑛 = 1016 [𝐻𝑧], with a beat frequency of 𝑓𝑛𝑏 ≅ 7 1015 [𝐻𝑧]. 

 

 

Figure 6 
Amplitude vs. time 

 

Figure 7 
Amplitude vs. displacement 

 

 

Figure 8 
Amplitude vs. time 

 

Figure 9 
Amplitude vs. displacement 

 

 

Figure 10 
Amplitude vs. time 

 

Figure 11 
Amplitude vs. displacement 
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Fig. 10-11: for these additional parameters: 𝜔𝑒 = 1020[1/𝑠] and 𝜔𝑝 = 5 1019[1/𝑠], the nuclear 

radiation frequency is 𝑓𝑛 = 1016 [𝐻𝑧]. 

 

Fig. 12-13: for these additional parameters: 𝜔𝑒 = 4 1020[1/𝑠] and 𝜔𝑝 = 1021[1/𝑠], the nuclear 

radiation frequency is 𝑓𝑛 = 1016 [𝐻𝑧]. 

According to the National Institute of Standards and Technology, the emission spectrum of 

Aluminum is in the range of frequencies 𝑓 = 1.8 1014 [𝐻𝑧] to 𝑓 = 2 1015 [𝐻𝑧]. 

The nuclear radiation frequencies in Fig. 2 and Fig. 4 are approximately within the range of 

emission of the Aluminum. This tells us that the frequency of oscillation of electron and proton 

shells should be approximately in the range of 𝑓𝑒 = 𝑓𝑝 = 1.6 1014 [𝐻𝑧] 𝑡𝑜 1.6 1015 [𝐻𝑧]. 

  

 

Figure 12 

Amplitude vs. time 

 

Figure 13 
Amplitude vs. displacement 

 

https://physics.nist.gov/PhysRefData/Handbook/Tables/aluminumtable2.htm
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Derivation of a Nuclear Interference Wave Equation by Applying an External Wave 
Remember that the nuclear wave equation is derived specifically for Aluminum (Al 13) in 

accordance with the nuclear shell packing proposed by the atomic theory of the Spinning Ring 

Model of Elementary Particles, with a Liquid Drop Model of the nucleus (Fig. 1). 

Assume that a plane wave of amplitude 𝐸𝑚, 

frequency 𝜔, and propagation velocity 𝑐 in the y-

direction strikes the outer shell of the "nuclear 

sphere". 

We disregard some minor scattering caused by 

the few outer electrons in the atom, which are 

located at a very long distance from the nucleus. 

The incident wave energy may be totally 

absorbed, partially absorbed, or not absorbed at 

all by the nuclear shells. 

Inside the nucleus, the wave velocity will be 

given by the velocity of oscillations of the proton 

and electron shells if they can absorb the incident energy. If the shells are unable to absorb 

energy (total transmission), the wave velocity inside the nucleus will remain unaltered (by keeping 

the velocity it had before entering the nucleus). 

The highest energy absorption (no reflection, no transmission) will happen at the shells' resonant 

frequencies, at which the nuclear mass becomes negative, just as the refractive index (see Part-

3). High-energy standing waves will arise inside the nucleus. 

An intermediate situation may occur when the energy is partially absorbed (reflection and 

transmission). In this case, a modulation is present (beat frequency) between the wave and the 

shell's oscillations frequencies. 

Assume that the wave has the following equation (we write the wave vector in a capital letter as 

\𝑣𝑒𝑐{𝐾} to avoid confusion with the Coulomb constant 𝑘: 

𝐸𝑤(𝑟, 𝑡) = 𝐸𝑚  cos(𝐾⃗⃗⃗ 𝑟  −  𝜔 𝑡)                (19) 

Where 𝐸𝑚 is the amplitude of the external wave. 

As the wave propagates in the y-direction, the wave vector is 𝐾⃗⃗⃗ = 0𝑖̂ + 𝑘𝑦𝑗̂ + 0𝑘̂ , with magnitude 

𝑘𝑦 = 𝐾. In spherical coordinates we have 

𝐾⃗⃗⃗ = 𝐾 sin(θ) sin(ϕ) 𝑟̂ + 𝐾 sin(ϕ) cos(θ) θ̂ + 𝐾cos(ϕ) ϕ̂         (20) 

Since the magnitude of the vector 𝑟 limited to the nucleus is 𝑟𝑛, we can write 𝑟 = 𝑟𝑛𝑟̂. The dot 

product is 𝐾⃗⃗⃗ ∗ 𝑟 = 𝐾 𝑠𝑖𝑛(𝜃) sin(𝜙) 𝑟𝑛. According to the propagation in the y-direction, 𝜃 = 𝜙 =
𝜋

2
. 

So, the dot product result is 𝐾⃗⃗⃗ ∗ 𝑟 = 𝐾 𝑟𝑛, and the wave equation for our plane wavefront 

propagating in the y-direction finally is 

𝐸𝑤(𝑟, 𝑡) = 𝐸𝑚 cos(𝐾𝑟𝑛 − 𝜔𝑡)             (21) 

Where 𝐸𝑤(𝑟, 𝑡) is the magnitude of the electric field. 

 

 

Figure 14 
External wavefront reaching the nucleus 
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We have a propagating electric field, but what is the direction of the field? 

Assume that the electric field is polarized in the z-direction in the zy-plane. Then we can write 

𝐸𝑤
⃗⃗⃗⃗⃗⃗ (𝑟, 𝑡) = 0𝑖̂ + 0𝑗̂ + 𝐸𝑤(𝑟, 𝑡)𝑘̂, which converted to spherical coordinates is 

𝐸𝑤
⃗⃗⃗⃗⃗⃗ (𝑟, 𝑡) = 𝐸𝑚𝑐𝑜𝑠(𝐾𝑟𝑛 − ω𝑡)cos(θ)𝑟̂ − 𝐸𝑚cos(𝐾𝑟𝑛 − ω𝑡)sin(θ)θ̂       

The polar angle in the z-direction is 𝜃 = 0. Therefore, our final expression of an oscillating electric 

field in the z-direction, which moves in the y-direction is: 

𝐸𝑤
⃗⃗⃗⃗⃗⃗ (𝑟, 𝑡) = 𝐸𝑚 cos(𝐾𝑟𝑛 − ω𝑡) 𝑟̂             (22) 

Where the magnitude is as given in (21), and 𝐾 =
𝜔

𝑣𝑤
. The velocity 𝑣𝑤 is  generic. Then, in the 

solution we can replace it by 𝑣𝑒𝑝(𝑡) or 𝑐 (speed of light) to study nuclear behaviors in absorption or 

transmission situations. 

Let's make a rough approximation of the total force exerted by the wave on the nucleus as the 

sum of the forces on every proton and electron which form the nuclear shells. According to our 6 

shells structure (Fig. 1), we have: 

𝐹⃗𝑒𝑥𝑡 = 𝑄 𝐸𝑤
⃗⃗⃗⃗⃗⃗ (𝑟, 𝑡)     =>   𝐹⃗𝑒𝑥𝑡 = 𝐸⃗⃗𝑤(𝑟, 𝑡) ⋅ (3𝑞 − 6𝑞 + 8𝑞 + 8𝑞 − 8𝑞 + 8𝑞)  =>  𝐹⃗𝑒𝑥𝑡 = 13 𝑞 𝐸⃗⃗𝑤(𝑟, 𝑡) 

𝐹⃗𝑒𝑥𝑡 = 13 𝑞 𝐸𝑚 cos (
ω

𝑣𝑤
𝑟𝑛 − ω𝑡) 𝑟̂          (23) 

The net nuclear force has already been derived in Part-1, and written in compact form, as given in 

equations (3). The total force on the nucleus will be 

𝐹⃗𝑡 = 𝐹⃗𝑛𝑒𝑡 + 𝐹⃗𝑒𝑥𝑡 

𝐹𝑡(𝑟, 𝑡) = −𝑞 𝑁𝑜 𝐸𝑜(𝑟, 𝑡) 𝑟̂ + 𝑞𝑁𝑠𝐸𝑠 𝑟̂ + 13 𝑞 𝐸𝑚 cos (
ω

𝑣𝑤
𝑟𝑛 − ω𝑡) 𝑟̂         (24) 

Assume that the total force is a function of the following variables 

𝐹𝑡(𝑟, 𝑡) = 𝑓(𝐸𝑜 , 𝐸𝑠, 𝐸𝑚, ω, 𝑣𝑤, 𝑟, 𝑡, 𝑟̂) 

Then, the total derivative is given by 

𝑑𝐹⃗𝑡(𝑟, 𝑡) = 𝑟̂𝑞𝑁𝑠 𝑑𝐸𝑠 + 13𝑟̂𝑞 cos (
ω𝑟𝑛

𝑣𝑤
− ω𝑡) 𝑑𝐸𝑚 − 13𝑟̂𝑞𝐸𝑚 (

𝑟𝑛

𝑣𝑤
− 𝑡) sin (

ω𝑟𝑛

𝑣𝑤
− ω𝑡) 𝑑ω +

13𝑟̂𝑞𝐸𝑚ω𝑟𝑛 sin(
ω𝑟𝑛
𝑣𝑤

−ω𝑡)𝑑𝑣𝑤

𝑣𝑤
2 − 𝑟̂𝑞𝑁𝑜 (

∂

∂𝑟
𝐸𝑜(𝑟, 𝑡)) 𝑑𝑟 + 𝑟̂ (−𝑞𝑁𝑜 (

∂

∂𝑡
𝐸𝑜(𝑟, 𝑡)) + 13𝑞𝐸𝑚ω sin (

ω𝑟𝑛

𝑣𝑤
−

ω𝑡)) 𝑑𝑡 + (−𝑞𝑁𝑜𝐸𝑜(𝑟, 𝑡) + 𝑞𝑁𝑠𝐸𝑠 + 13𝑞𝐸𝑚 cos (
ω𝑟𝑛

𝑣𝑤
− ω𝑡)) 𝑑𝑟̂                   (25) 

 

The partial derivative of (25) with respect to 𝑟 is 

 
∂

∂𝑟
(𝐹⃗𝑡(𝑟 , 𝑡) ) = 𝑟̂𝑞𝑁𝑠

𝑑𝐸𝑠

𝑑𝑟
+ 13𝑟̂𝑞 cos (

ω𝑟𝑛

𝑣𝑤
− ω𝑡)

𝑑𝐸𝑚

𝑑𝑟
− 13𝑟̂𝑞𝐸𝑚 (

𝑟𝑛

𝑣𝑤
− 𝑡) sin (

ω𝑟𝑛

𝑣𝑤
− ω𝑡)

𝑑ω

𝑑𝑟
+

13𝑟̂𝑞𝐸𝑚ω𝑟𝑛 sin(
ω𝑟𝑛
𝑣𝑤

−ω𝑡)

𝑣𝑤
2

𝑑𝑣𝑤

𝑑𝑟
− 𝑟̂𝑞𝑁𝑜 (

∂

∂𝑟
𝐸𝑜(𝑟, 𝑡))

𝑑𝑟

𝑑𝑟
+ 𝑟̂ (−𝑞𝑁𝑜 (

∂

∂𝑡
𝐸𝑜(𝑟, 𝑡)) + 13𝑞𝐸𝑚ω sin (

ω𝑟𝑛

𝑣𝑤
− ω𝑡))

𝑑𝑡

𝑑𝑟
+

(−𝑞𝑁𝑜𝐸𝑜(𝑟, 𝑡) + 𝑞𝑁𝑠𝐸𝑠 + 13𝑞𝐸𝑚 cos (
ω𝑟𝑛

𝑣𝑤
− ω𝑡))

𝑑𝑟̂

𝑑𝑟
              (26)   
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Considering that 

𝑑𝐸𝑠

𝑑𝑟
= 0 ; 

𝑑𝐸𝑚

𝑑𝑟
= 0   (we assume the amplitude of the wave keeps constant throughout the nucleus diameter) 

𝑑ω

𝑑𝑟
= 0  (we assume that frequency doesn't change with distance) 

𝑑𝑣𝑤

𝑑𝑟
=

𝑑𝑣𝑤

𝑑𝑟
⋅

𝑑𝑡

𝑑𝑡
=

𝑣̇𝑤(𝑡)

𝑟̇(𝑡)
 ;   

𝑑𝑡

𝑑𝑟
=

1

𝑟̇(𝑡)
;  

𝑑𝑟̂

𝑑𝑟
= 0 

Then, Eq. (26) is reduced to 

∂

∂𝑟
(𝐹⃗𝑡(𝑟 , 𝑡)) =

13𝑟̂𝑞𝐸𝑚ω𝑟𝑛 sin(
ω𝑟𝑛
𝑣𝑤

−ω𝑡)

𝑣𝑤
2 ⋅

𝑣̇𝑤(𝑡)

𝑟̇(𝑡)
− 𝑟̂𝑞𝑁𝑜 (

∂

∂𝑟
𝐸𝑜(𝑟, 𝑡)) + 𝑟̂ (−𝑞𝑁𝑜 (

∂

∂𝑡
𝐸𝑜(𝑟, 𝑡)) +

13𝑞𝐸𝑚ω sin (
ω𝑟𝑛

𝑣𝑤
− ω𝑡)) ⋅

1

𝑟̇(𝑡)
             (27)  

 

Now we take the partial derivative of (25) with respect to 𝑡 

∂

∂𝑡
(𝐹⃗𝑡(𝑟 , 𝑡)) = 𝑟̂𝑞𝑁𝑠

𝑑𝐸𝑠

𝑑𝑡
+ 13𝑟̂𝑞 cos (

ω𝑟𝑛

𝑣𝑤
− ω𝑡)

𝑑𝐸𝑚

𝑑𝑡
− 13𝑟̂𝑞𝐸𝑚 (

𝑟𝑛

𝑣𝑤
− 𝑡) sin (

ω𝑟𝑛

𝑣𝑤
− ω𝑡)

𝑑ω

𝑑𝑡
+

13𝑟̂𝑞𝐸𝑚ω𝑟𝑛 sin(
ω𝑟𝑛
𝑣𝑤

−ω𝑡)

𝑣𝑤
2

𝑑𝑣𝑤

𝑑𝑡
− 𝑟̂𝑞𝑁𝑜 (

∂

∂𝑟
𝐸𝑜(𝑟, 𝑡))

𝑑𝑟

𝑑𝑡
+ 𝑟̂ (−𝑞𝑁𝑜 (

∂

∂𝑡
𝐸𝑜(𝑟, 𝑡)) + 13𝑞𝐸𝑚ω sin (

ω𝑟𝑛

𝑣𝑤
− ω𝑡))

𝑑𝑡

𝑑𝑡
+

(−𝑞𝑁𝑜𝐸𝑜(𝑟, 𝑡) + 𝑞𝑁𝑠𝐸𝑠 + 13𝑞𝐸𝑚 cos (
ω𝑟𝑛

𝑣𝑤
− ω𝑡))

𝑑𝑟̂

𝑑𝑡
  (28) 

Considering that 

𝑑𝐸𝑠

𝑑𝑡
= 0 ; 

𝑑𝐸𝑚

𝑑𝑡
= 0   (we assume the amplitude of the wave keeps constant in time) 

𝑑𝜔

𝑑𝑡
= 0  (we assume that frequency doesn't change with time) 

𝑑𝑟

𝑑𝑡
= 𝑟̇(𝑡);  

𝑑𝑣𝑤

𝑑𝑡
= 𝑣̇𝑤(𝑡) 

𝑑𝑟̂

𝑑𝑡
= θ̇(𝑡)θ̂(𝑡) + ϕ̇(𝑡) sin(θ(𝑡)) ϕ̂(𝑡) 

Recall that 𝐸⃗⃗𝑠 =
𝑘𝑞 𝑟̂(𝑡)

(η⋅𝑟𝑛)2. Its derivative with respect to time is 

𝑑𝐸⃗⃗𝑠

𝑑𝑡
=

𝑘 𝑞 ϕ̇(𝑡) sin(θ(𝑡)) ϕ̂(𝑡)

η2𝑟𝑛
2

+
𝑘 𝑞 θ̇(𝑡) θ̂(𝑡)

η2𝑟𝑛
2

 

Shell oscillations occur in the radial direction, coincident with the nucleus radius line. Therefore, 

the internal electric field 𝐸0 has no component in 𝜃 nor in 𝜙̂ directions. Therefore, 

𝑑

𝑑𝑡
(𝑟̂(𝑡)) = 0   and   

𝑑

𝑑𝑡
(𝐸⃗⃗𝑠) = 0 

Equation (28) is then reduced to 

∂

∂𝑡
(𝐹⃗𝑡(𝑟 , 𝑡)) =

13𝑟̂𝑞𝐸𝑚ω𝑟𝑛 sin(
ω𝑟𝑛
𝑣𝑤

−ω𝑡)

𝑣𝑤
2 ⋅ 𝑣̇𝑤(𝑡) − 𝑟̂𝑞𝑁𝑜 (

∂

∂𝑟
𝐸𝑜(𝑟, 𝑡)) ⋅ 𝑟̇(𝑡) + 𝑟̂ (−𝑞𝑁𝑜 (

∂

∂𝑡
𝐸𝑜(𝑟, 𝑡)) +

13𝑞𝐸𝑚ω sin (
ω𝑟𝑛

𝑣𝑤
− ω𝑡))  (29)  
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By taking the derivative of Eq. (27) with respect to 𝑡, and considering that the components in 𝜃 and 

𝜙̂ directions are zero, we obtain: 

∂2

∂𝑟 ∂𝑡
(𝐹⃗𝑡(𝑟 , 𝑡) ) = 𝑟̂(𝑡) (−

13𝑞𝐸𝑚ω2𝑟𝑛 cos(
ω𝑟𝑛

𝑣𝑤(𝑡)
−ω𝑡)𝑣̇𝑤(𝑡)

𝑣𝑤(𝑡)2𝑟̇(𝑡)
−

26𝑞𝐸𝑚ω𝑟𝑛 sin(
ω𝑟𝑛

𝑣𝑤(𝑡)
−ω𝑡)𝑣̇𝑤(𝑡)2

𝑣𝑤(𝑡)3𝑟̇(𝑡)
−

13𝑞𝐸𝑚ω𝑟𝑛 sin(
ω𝑟𝑛

𝑣𝑤(𝑡)
−ω𝑡)𝑣̇𝑤(𝑡)𝑟̈(𝑡)

𝑣𝑤(𝑡)2𝑟̇(𝑡)2
− 𝑞𝑁𝑜 (

∂2

∂𝑟 ∂𝑡
𝐸𝑜(𝑟, 𝑡)) −

13𝑞𝐸𝑚ω sin(
ω𝑟𝑛

𝑣𝑤(𝑡)
−ω𝑡)𝑟̈(𝑡)

𝑟̇(𝑡)2
−

13𝑞𝐸𝑚ω2 cos(
ω𝑟𝑛

𝑣𝑤(𝑡)
−ω𝑡)

𝑟̇(𝑡)
+

𝑞𝑁𝑜(
∂

∂𝑡
𝐸𝑜(𝑟,𝑡))𝑟̈(𝑡)

𝑟̇(𝑡)2 −
𝑞𝑁𝑜(

∂2

∂𝑡2𝐸𝑜(𝑟,𝑡))

𝑟̇(𝑡)
)  (30)  

By taking the derivative of Eq. (29) with respect to 𝑟 , we get 

∂2

∂𝑡 ∂𝑟
(𝐹⃗𝑡(𝑟 , 𝑡) ) = −𝑁𝑜𝑟̇(𝑡)𝑟̂(𝑡) (

∂2

∂𝑟2
𝐸𝑜(𝑟, 𝑡)) 𝑞 − 𝑟̂(𝑡)𝑞𝑁𝑜 (

∂2

∂𝑟 ∂𝑡
𝐸𝑜(𝑟, 𝑡)) (31)  

We see that Eq. (30) = Eq. (31). After equating both equations, simplifying terms, and doing some 

algebra, we arrive at our final Nuclear Interference Wave Equation: 

(
∂2

∂𝑡2 𝐸𝑜(𝑟, 𝑡)) − (𝑣𝑒𝑝(𝑡))
2

(
∂2

∂𝑟2 𝐸𝑜(𝑟, 𝑡)) −
𝑎𝑒𝑝(𝑡)

𝑣𝑒𝑝(𝑡)
(

∂

∂𝑡
𝐸𝑜(𝑟, 𝑡)) = −

13𝐸𝑚ω

𝑁𝑜
 (

ω𝑟𝑛𝑣̇𝑤(𝑡)

𝑣𝑤(𝑡)2  cos (
ω𝑟𝑛

𝑣𝑤(𝑡)
− ω𝑡) +

2𝑟𝑛(𝑣̇𝑤(𝑡))
2

𝑣𝑤(𝑡)3  sin (
ω𝑟𝑛

𝑣𝑤(𝑡)
− ω𝑡) +

𝑟𝑛𝑣̇𝑤(𝑡)𝑎𝑒𝑝(𝑡)

𝑣𝑤(𝑡)2𝑣𝑒𝑝(𝑡)
 sin (

ω𝑟𝑛

𝑣𝑤(𝑡)
− ω𝑡) +

𝑎𝑒𝑝(𝑡)

𝑣𝑒𝑝(𝑡)
 sin (

ω𝑟𝑛

𝑣𝑤(𝑡)
− ω𝑡) + ω cos (

ω𝑟𝑛

𝑣𝑤(𝑡)
− ω𝑡))  

(32) 

Written in a more general form: 

(
∂2

∂𝑡2 𝐸𝑜(𝑟, 𝑡)) − (𝑟̇(𝑡))
2

(
∂2

∂𝑟2 𝐸𝑜(𝑟, 𝑡)) −
𝑟̈(𝑡)

𝑟̇(𝑡)
(

∂

∂𝑡
𝐸𝑜(𝑟, 𝑡)) = −

13𝐸𝑚ω

𝑁𝑜
 (

ω𝑟𝑛𝑣̇𝑤(𝑡)

𝑣𝑤(𝑡)2  cos (
ω𝑟𝑛

𝑣𝑤(𝑡)
− ω𝑡) +

2𝑟𝑛(𝑣̇𝑤(𝑡))
2

𝑣𝑤(𝑡)3  sin (
ω𝑟𝑛

𝑣𝑤(𝑡)
− ω𝑡) +

𝑟𝑛𝑣̇𝑤(𝑡)𝑟̈(𝑡)

𝑣𝑤(𝑡)2𝑟̇(𝑡)
 sin (

ω𝑟𝑛

𝑣𝑤(𝑡)
− ω𝑡) +

𝑟̈(𝑡)

𝑟̇(𝑡)
 sin (

ω𝑟𝑛

𝑣𝑤(𝑡)
− ω𝑡) + ω cos (

ω𝑟𝑛

𝑣𝑤(𝑡)
− ω𝑡))   

(32a) 

This partial differential equation (PDE) is of type hyperbolic, with variable coefficients, whose 

analytical solution involves a certain amount of work. To simplify this work, it will be solved 

numerically with the same initial-boundary conditions as given from Eq. (15) to (18) for the wave 

equation (14). 

Nuclear Wave Interference Analysis 
The nuclear wave equation (14) has been numerically solved with the initial-boundary conditions 

(15) to (18). Some graphs of amplitude with respect to time and displacement (snapshots) are 

shown below for the following parameters: 

𝑟𝑛 = 3.5 10−15 [𝑚];     𝐴𝑒 = 2 10−16 [𝑚];    𝐴𝑝 = 10−3𝐴𝑒 [𝑚];   𝑁0 = 378;   𝑁𝑠 = 312 

The analysis will be separated into two parts, by considering the absorption and transmission of 

energy by the nucleus: 

• Absorption: velocity of the external wave in the nucleus equal to the velocity of the shell’s 

oscillations, i.e., 𝑣𝑤(𝑡) = 𝑣𝑒𝑝(𝑡) 

• Transmission: velocity of the external wave in the nucleus equal to the speed of light 𝑐. 
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Nuclear Wave Interference Under Nuclear Absorption of Energy 

In this case, the following external wave variables have been set: 𝑣𝑤(𝑡) = 𝑣𝑒𝑝(𝑡) and 𝑣̇𝑤(𝑡) =

𝑣̇𝑒𝑝(𝑡). As the Aluminum electric breakdown is approximately 𝐸𝑏𝑟 ≅ 15 106 [
𝑉

𝑚
], the amplitude of 

the external wave was kept below that value at 𝐸𝑚 ≤ 107 [
𝑉

𝑚
], while the frequency was changed to 

reflect the shifts between positive and negative amplitudes of the wave interference.  

The graphs of amplitude vs. time correspond to a displacement 𝑟 = 2.5 1015 [𝑚], while the plots of 

amplitude vs. displacement correspond to the nucleus radius for an arbitrary time, taken within the 

allowed time span from the solution. 

When the previous wave equation (13) was solved, it was shown that there are natural 

interferences causing resonance and standing waves in the nucleus, which are demonstrated by 

the “beats” and “double beats” on those graphs. Then, in the present analysis, we can expect 

“beats of double beats” caused by the external wave. 

 

Fig. 15-17: No external wave is acting on the 

nucleus (natural nuclear emission), i.e., 𝐸𝑚 = 𝜔 =
0. 

Additional parameters: 𝜔𝑒 = 2 1015[1/𝑠] and 𝜔𝑝 =

5 1016[1/𝑠].  

Low frequency beat:  𝑓𝑏𝑙 ≅ 5.6 1012 [𝐻𝑧]; high 

frequency beat: 𝑓𝑏ℎ ≅ 1.5 1014 [𝐻𝑧]; “carrier” 

frequency: 𝑓𝑐 ≅ 7 1014 [𝐻𝑧] 

 

  

 

Figure 15 
Amplitude vs, time 

 

Figure 16 
Amplitude vs, displacement 

 

 

Figure 17 

Amplitude vs, time. Expanding one packet (beat) 
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Fig. 18-20: external wave is acting on the nucleus 

𝐸𝑚 = 107 [
𝑉

𝑚
] ;  𝜔 = 2 1015 [

1

𝑠
] 

Additional parameters: 𝜔𝑒 = 2 1015[1/𝑠] and 𝜔𝑝 =

5 1016[1/𝑠].  

Low frequency beat:  𝑓𝑏𝑙 ≅ 5.6 1012 [𝐻𝑧]; high 

frequency beat: 𝑓𝑏ℎ ≅ 1.5 1014 [𝐻𝑧]; “carrier” 

frequency: 𝑓𝑐 ≅ 7 1014 [𝐻𝑧] 

No changes were observed with respect to the 

previous case. 

 

  

 

Figure 18 
Amplitude vs, time 

 

Figure 19 
Amplitude vs, displacement 

 

 

Figure 20 
Amplitude vs, time. Expanding one big packet (double beat) 

 

Figure 21 
Amplitude vs, time 

 

Figure 22 
Amplitude vs, displacement 
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Fig. 21-23: external wave is acting on the nucleus 

𝐸𝑚 = 107 [
𝑉

𝑚
] ;  𝜔 = 2 1016 [

1

𝑠
] 

Additional parameters: 𝜔𝑒 = 2 1016[1/𝑠] and 𝜔𝑝 =

3 1015[1/𝑠].  

Low frequency beat:  𝑓𝑏𝑙 ≅ 5.6 1013 [𝐻𝑧]; high 

frequency beat: 𝑓𝑏ℎ ≅ 1015 [𝐻𝑧]; “carrier” 

frequency: 𝑓𝑐 ≅ 3.3 1015 [𝐻𝑧]. 

 

 

  

 

Fig. 24-26: external wave is acting on the nucleus 

𝐸𝑚 = 107 [
𝑉

𝑚
] ;  𝜔 = 3 1015 [

1

𝑠
] 

Additional parameters: 𝜔𝑒 = 2 1016[1/𝑠] and 𝜔𝑝 =

3 1015[1/𝑠].  

Low frequency beat:  𝑓𝑏𝑙 ≅ 5.6 1013 [𝐻𝑧]; high 

frequency beat: 𝑓𝑏ℎ ≅ 1015 [𝐻𝑧]; “carrier” 

frequency: 𝑓𝑐 ≅ 2.5 1015 [𝐻𝑧]. 

 

  

 

Figure 23 

Amplitude vs, time. Expanding one big packet (double beat) 

 

Figure 24 
Amplitude vs, time 

 

Figure 25 
Amplitude vs, displacement 

 

 

Figure 26 
Amplitude vs, time. Expanding one big packet (double beat) 
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Fig. 27-29: external wave is acting on the nucleus 

𝐸𝑚 = 104 [
𝑉

𝑚
] ;  𝜔 = 3 1015 [

1

𝑠
] 

Additional parameters: 𝜔𝑒 = 2 1016[1/𝑠] and 𝜔𝑝 =

3 1015[1/𝑠].  

Low frequency beat:  𝑓𝑏𝑙 ≅ 5.6 1013 [𝐻𝑧]; high 

frequency beat: 𝑓𝑏ℎ ≅ 1015 [𝐻𝑧]; “carrier” 

frequency: 𝑓𝑐 ≅ 2.5 1015 [𝐻𝑧]. 

 

  

Fig. 30-32: external wave is acting on the nucleus 

𝐸𝑚 = 107 [
𝑉

𝑚
] ;  𝜔 = 1015 [

1

𝑠
] 

Additional parameters: 𝜔𝑒 = 5 1014[1/𝑠] and 𝜔𝑝 =

1015[1/𝑠].  

Beat frequency:  𝑓𝑏 ≅ 1.4 1012 [𝐻𝑧]; “carrier” 

frequency: 𝑓𝑐 ≅ 7.7 1013 [𝐻𝑧]. 

 

  

 

Figure 27 
Amplitude vs, time 

 

Figure 28 
Amplitude vs, displacement 

 

 

Figure 29 
Amplitude vs, time. Expanding one big packet (double beat) 

 

Figure 30 
Amplitude vs, time 

 

Figure 31 
Amplitude vs, displacement 

 

 

Figure 32 
Amplitude vs, time. Partial expansion of beats 
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Fig. 33-35: external wave is acting on the nucleus 

𝐸𝑚 = 107 [
𝑉

𝑚
] ;  𝜔 = 5.5 1020 [

1

𝑠
] 

Additional parameters: 𝜔𝑒 = 5 1014[1/𝑠] and 𝜔𝑝 =

1015[1/𝑠].  

Beat frequency:  𝑓𝑏 ≅ 1.4 1012 [𝐻𝑧]; “carrier” 

frequency: 𝑓𝑐 ≅ 8 1013 [𝐻𝑧]. 

 

 

 

  

Fig. 36-38: external wave is acting on the nucleus 

𝐸𝑚 = 107 [
𝑉

𝑚
] ;  𝜔 = 6 1020 [

1

𝑠
] 

Additional parameters: 𝜔𝑒 = 5 1014[1/𝑠] and 𝜔𝑝 =

1015[1/𝑠].  

Beat frequency:  𝑓𝑏 ≅ 1.4 1012 [𝐻𝑧]; “carrier” 

frequency: 𝑓𝑐 ≅ 7.7 1013 [𝐻𝑧]. 

 

 

 

Figure 33 
Amplitude vs, time 

 

Figure 34 
Amplitude vs, displacement 

 

 

Figure 35 
Amplitude vs, time. Partial expansion of beats 

 

Figure 36 
Amplitude vs, time 

 

Figure 37 
Amplitude vs, displacement 

 

 

Figure 38 
Amplitude vs, time. Partial expansion of beats 
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As previously demonstrated from the emission of Aluminum, the frequency of oscillation of 

electron and proton shells should be approximately in the range of 𝑓𝑒 = 𝑓𝑝 = 1.6 1014 [𝐻𝑧] to 

1.6 1015 [𝐻𝑧]. Approximately within this range, interference effects have been observed to begin 

for an external wave frequency of 𝑓𝑤 ≥  1015 𝐻𝑧, which corresponds to the range of Near UV - 

Extreme UV. 

 

Nuclear Wave Interference Under Nuclear Transmission of Energy 

In this case, the following external wave variables have been set: 𝑣𝑤(𝑡) = 𝑣𝑒𝑝(𝑡) and 𝑣̇𝑤(𝑡) =

𝑣̇𝑒𝑝(𝑡). As the Aluminum electric breakdown is approximately 𝐸𝑏𝑟 ≅ 15 106 [
𝑉

𝑚
], the amplitude of 

the external wave was kept below that value at 𝐸𝑚 ≤ 107 [
𝑉

𝑚
], while the frequency was changed to 

reflect the shifts between positive and negative amplitudes of the wave interference.  

The graphs of amplitude vs. time correspond to an arbitrary displacement, while the plots of 

amplitude vs. displacement correspond to the nucleus radius for an arbitrary time, taken within the 

allowed time span from the solution. 

When the previous wave equation (13) was solved, it was shown that there are natural 

interferences causing resonance and standing waves in the nucleus, which are demonstrated by 

the “beats” and “double beats” on those graphs. Then, in the present analysis, we can expect 

“beats of double beats” caused by the external wave. 

 

Fig. 39-41: No external wave is acting on the 

nucleus (natural nuclear emission), i.e., 𝐸𝑚 = 𝜔 =
0. 

Additional parameters: 𝜔𝑒 = 2 1015[1/𝑠] and 𝜔𝑝 =

5 1016[1/𝑠].  

Low frequency beat:  𝑓𝑏𝑙 ≅ 5.6 1012 [𝐻𝑧]; high 

frequency beat: 𝑓𝑏ℎ ≅ 1.4 1014 [𝐻𝑧]; “carrier” 

frequency: 𝑓𝑐 ≅ 6.6 1014 [𝐻𝑧] 

 

  

 

Figure 39 
Amplitude vs, time 

 

Figure 40 
Amplitude vs, displacement 

 

 

Figure 41 

Amplitude vs, time. Expanding one packet (beat) 
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Fig. 42-44: external wave is acting on the nucleus 

𝐸𝑚 = 107  [
𝑉

𝑚
] ;  ω = 2 1015  [

1

𝑠
] 

Additional parameters: ω𝑒 = 2 1015[1/s] and ω𝑝 =

5 1016[1/s].  

Low frequency beat:  𝑓𝑏𝑙 ≅ 5.6 1012 [Hz]; high 

frequency beat: 𝑓𝑏ℎ ≅ 1.4 1014 [Hz]; “carrier” 

frequency: 𝑓𝑐 ≅ 6.6 1014 [Hz] 

No changes were observed with respect to the 

previous case. 

 

  

 

Figure 42 
Amplitude vs, time 

 

Figure 43 
Amplitude vs, displacement 

 

 

Figure 44 
Amplitude vs, time. Expanding one big packet (double beat) 

 

Figure 45 
Amplitude vs, time 

 

Figure 46 
Amplitude vs, displacement 
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Fig. 45-47: external wave is acting on the nucleus 

𝐸𝑚 = 107 [
𝑉

𝑚
] ;  𝜔 = 2 1016 [

1

𝑠
] 

Additional parameters: 𝜔𝑒 = 2 1016[1/𝑠] and 𝜔𝑝 =

3 1015[1/𝑠].  

Low frequency beat:  𝑓𝑏𝑙 ≅ 5.6 1013 [𝐻𝑧]; high 

frequency beat: 𝑓𝑏ℎ ≅ 9.1 1014 [𝐻𝑧]; “carrier” 

frequency: 𝑓𝑐 ≅ 2.5 1015 [𝐻𝑧]. 

 

 

  

 

Fig. 48-50: external wave is acting on the nucleus 

𝐸𝑚 = 107 [
𝑉

𝑚
] ;  𝜔 = 3 1015 [

1

𝑠
] 

Additional parameters: 𝜔𝑒 = 2 1016[1/𝑠] and 𝜔𝑝 =

3 1015[1/𝑠].  

Low frequency beat:  𝑓𝑏𝑙 ≅ 5.6 1013 [𝐻𝑧]; high 

frequency beat: 𝑓𝑏ℎ ≅ 9.1 1014 [𝐻𝑧]; “carrier” 

frequency: 𝑓𝑐 ≅ 2.5 1015 [𝐻𝑧]. 

 

  

 

Figure 47 

Amplitude vs, time. Expanding one big packet (double beat) 

 

Figure 48 
Amplitude vs, time 

 

Figure 49 
Amplitude vs, displacement 

 

 

Figure 50 

Amplitude vs, time. Expanding one big packet (double beat) 
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Fig. 51-53: external wave is acting on the nucleus 

𝐸𝑚 = 104 [
𝑉

𝑚
] ;  𝜔 = 3 1015 [

1

𝑠
] 

Additional parameters: 𝜔𝑒 = 2 1016[1/𝑠] and 𝜔𝑝 =

3 1015[1/𝑠].  

Low frequency beat:  𝑓𝑏𝑙 ≅ 5.6 1013 [𝐻𝑧]; high 

frequency beat: 𝑓𝑏ℎ ≅ 9.1 1014 [𝐻𝑧]; “carrier” 

frequency: 𝑓𝑐 ≅ 2 1015 [𝐻𝑧]. 

 

  

Fig. 54-56: external wave is acting on the nucleus 

𝐸𝑚 = 107 [
𝑉

𝑚
] ;  𝜔 = 1015 [

1

𝑠
] 

Additional parameters: 𝜔𝑒 = 5 1014[1/𝑠] and 𝜔𝑝 =

1015[1/𝑠].  

Beat frequency:  𝑓𝑏 ≅ 1.4 1012 [𝐻𝑧]; “carrier” 

frequency: 𝑓𝑐 ≅ 7.7 1013 [𝐻𝑧]. 

 

  

 

Figure 51 
Amplitude vs, time 

 

Figure 52 
Amplitude vs, displacement 

 

 

Figure 53 
Amplitude vs, time. Expanding one big packet (double beat) 

 

Figure 54 
Amplitude vs, time 

 

Figure 55 
Amplitude vs, displacement 

 

 

Figure 56 
Amplitude vs, time. Partial expansion of beats 
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Fig. 57-59: external wave is acting on the nucleus 

𝐸𝑚 = 107 [
𝑉

𝑚
] ;  𝜔 = 5.5 1020 [

1

𝑠
] 

Additional parameters: 𝜔𝑒 = 5 1014[1/𝑠] and 𝜔𝑝 =

1015[1/𝑠].  

Beat frequency:  𝑓𝑏 ≅ 1.4 1012 [𝐻𝑧]; “carrier” 

frequency: 𝑓𝑐 ≅ 7.7 1013 [𝐻𝑧]. 

 

 

 

  

Fig. 60-62: external wave is acting on the nucleus 

𝐸𝑚 = 107 [
𝑉

𝑚
] ;  𝜔 = 6 1020 [

1

𝑠
] 

Additional parameters: 𝜔𝑒 = 5 1014[1/𝑠] and 𝜔𝑝 =

1015[1/𝑠].  

Beat frequency:  𝑓𝑏 ≅ 1.4 1012 [𝐻𝑧]; “carrier” 

frequency: 𝑓𝑐 ≅ 7.7 1013 [𝐻𝑧]. 

 

 

 

Figure 57 
Amplitude vs, time 

 

Figure 58 
Amplitude vs, displacement 

 

 

Figure 59 
Amplitude vs, time. Partial expansion of beats 

 

Figure 60 
Amplitude vs, time 

 

Figure 61 
Amplitude vs, displacement 

 

 

Figure 62 
Amplitude vs, time. Partial expansion of beats 
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As can be seen from the graphs, nuclear transmission conditions show little differences in beat 

and “carrier” frequencies with respect to the absorption state analyzed in previous paragraphs. 

However, there are some differences in the amplitude of the interference wave, and the most 

important aspect is that its amplitude is never negative for high frequencies of the external wave. 
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Conclusions 

Based on the New Atomic Model and the Universal Electrodynamic Force, two wave equations 

have been derived, the first accounting for the self-oscillation nature of the nuclear shells, while 

the second exposes the nuclear wave interference caused by the internal shell oscillations with an 

external wave. 

It has been demonstrated that the first derived wave equation from shells’ self-oscillations, clearly 

predicts the emission of Aluminum according to international standards. 

Moreover, the nuclear wave equation predicts emission lines for the Aluminum which are still 

unknown and need to be verified experimentally. 

Both nuclear wave equations derived in this study may shed more light on the understanding of 

the nuclear nature, and open new possibilities to alter and control the mass. 
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