
ZFC Inconsistency Explained and Defended 

By Jim Rock 

Abstract: There is a class of sets that can be constructed within ZFC that both have and do not have a 
largest element. Two contradictory arguments about these properties are developed and defended. 

Introduction: This paper is a sequel to the three papers listed below[1]. For all rational numbers a in the 
closed interval [0, 1] let the collection of all Ra sets be { y is a rational number | 0 ≤ y ≤ a } 
The entire collection of Ra sets form a hierarchy of sets. 
Each set contains all the elements in sets below it in the set hierarchy. 
Each set contains a single element that is not in any set below it in the set hierarchy. 
We take the largest element out of each set in the entire collection.  
The set containing zero becomes the null set. 
The previous largest element of every Ra set is now missing from each set. However, all Ra sets remain in 
the same position in the hierarchy of sets in descending order as { y is a rational number | 0 ≤ y < a } 

Argument #1: Each Ra contains a largest element. 
1) Each Ra contains the former largest elements of the subsets below it in the set hierarchy. 
2) Each Ra contains element(s) not in any subset below it in the set hierarchy. (See Objection addressed 
aa below Argument #2.) 
3) Let c and d be two elements of a single Ra set with c > d. 
4) d is an element of Rc, which is a proper subset of Ra. 
5) For any two elements in Ra the smaller element is contained in a proper subset of Ra. 

6) By steps 2) and 5) each Ra set contains a single largest element not in any set below it in the hierarchy. 

Argument #2: No Ra contains a largest element. 
1) Suppose there is a largest element a′ in some individual Ra. 
2) a′ < (a′ + a)/2 < a. 
3) Let b = (a′ + a)/2. 
4) Then b is in Ra and a′ < b. 
5) a′ is in Rb a proper subset of Ra. 

Objection addressed: When a largest element is assumed in Argument #2, it leads to a contradiction; so 
there is no largest element. Every Ra element is in one of the proper subsets below Ra in the set hierarchy. 
It is a valid proof by contradiction. 

However, as explained below Step 2 in Argument #1 is true and each step within Argument #1 is either a 
true statement or a valid logical conclusion from true statements. No attempt is made to specify a largest 
element in Argument #1. It just proves that a largest element must exist.  

The Ra sets are in descending hierarchical order. In every position below each individual Ra for every 
rational x < a is an Rx set{ y is a rational number | 0 ≤ y < x }.  

Since each Ra and its collection of Rx subsets are part of the entire descending set hierarchy, there exists 
at least one Ra set element s ≥ (all values of) x. Otherwise, there could be no descending set hierarchy.  

As shown in Argument #1 steps 3), 4) and 5) for any two elements in Ra, the smaller element is contained 
in a proper subset of Ra. There is at most one Ra set element missing from all the Rx subsets.  

Thus, there must be a single largest Ra set element missing from all the Rx subsets.  

[1]https://vixra.org/pdf/2302.0145v1.pdf  https://vixra.org/abs/2303.0105 https://vixra.org/pdf/2304.0008v1.pdf 
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