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The Origin of the Generalized EMC Effect

Sylwester Kornowski

Abstract: Here, using the Scale-Symmetric Theory (SST), we show that the sizes of the 
EMC effect per nucleon in different nuclei depend on a mean of local inertias for the nuclei 
and that the generalized EMC effect concerns the virtual nuclear field of nucleons. We 
described also the shadowing region, the dip, and the two plateaux. We predict that for nuclei 
at least such heavy as iron, there should be a point/strong-signal for the Bjorken x = 3.2 and 
the EMC ratio 4.8. We show that the dependence of nuclear binding energy on mass-number 
is a result of modification of the virtual nuclear weak field and that the proton magnetic and 
electric polarizability radii play the key role.

1. Introduction

The average binding energy of nucleons inside atomic nuclei is very low in comparison 
with the energy transferred in deep inelastic scattering (DIS) reactions that probe nucleons, so 
the cross sections for nucleons in nuclei and for free nucleons should be practically the same. 
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But they are not. It is the European-Muon-Collaboration (EMC) effect, the very important 
unsolved problem in physics since 1983 [1].

Here, using the Scale-Symmetric Theory [2], we show that the EMC effect and the 
dependence of nuclear binding energy on the mass-number Ai (it is the sum of protons and 
neutrons in atomic nucleus) follow from modifications of the virtual nuclear field of nucleons.

We show that the dependence of the EMC ratios on the Bjorken x for nucleon in atomic 
nucleus in DIS can be described by the generalized curve presented in Fig.1. Our theoretical 
results are fully consistent with the averaged experimental data presented in [3]. We 
additionally predict that there should be a point/strong-signal for the Bjorken x = 3.2 and the 
EMC ratio REMC = 4.84, so our model can be experimentally verified.

The EMC effect is an anomalous region in which the EMC ratio (the ratio of cross section
of nucleon in atomic nucleus to cross section of free proton) decreases with increasing the 
Bjorken x.

SST shows that a nucleon consists of the core composed of the spin-1/2 torus/electric-
charge with the equatorial radius equal to A = 0.6974425 fm (it is responsible for the 
nuclear strong and electromagnetic interactions) and of the central (scalar) spacetime 
condensate Y = 424.12176 MeV responsible for the nuclear weak interactions. Outside the 
core, there is the relativistic pion on the Titius-Bode orbit for the nuclear strong interactions 
(its radius is A + B = 1.19928 fm).

From the model of dynamic supersymmetry for atomic nuclei and experimental data [4]
follows that in the lighter nuclei, there dominate the almost free alpha particles denoted by 
2p2n (where p denotes proton while n neutron) and the bound (2p2n)bound alpha particles (it 
is a half of the 4p4n cuboid), so the 4p4n cuboids as well. In the heavier nuclei, there 
dominate the 3p5n and 4p4n cuboids. The internal structure of atomic nuclei on the main 
path of stability is described in [2].

The more and more protons in heavier and heavier atomic nuclei force the 4p4n 3p5n
transitions. But contrary to the 4p4n, in the 3p5n cuboid, there is one unpolarized neutron 
that practically is not bound with the other 7 nucleons. It causes that the distance between the 
bases in the 3p5n cuboid is larger than in 4p4n. It is possible because the virtual field 
concerning the nuclear weak interactions has two quantized ranges which are the proton 
magnetic and electric polarizability radii [5] – they are equal to A and A + B, respectively, 
and they are the equatorial radius of the core of baryons and the radius of the orbit for the 
nuclear strong interactions on which the relativistic charged pion in nucleons is placed.

We start from following remarks.

*The nucleons in a nucleus interact in such a way the number of the pn pairs was biggest.

*From the model of dynamic supersymmetry for atomic nuclei follows that the interactions 
in nuclear structures (i.e. N, 1p1n, 2p2n, 3p4n, 4p4n and 3p5n [2]) are practically 
saturated so we neglect the interactions between the structures because they appear 
sporadically. The mean binding energy per nucleon from interactions of such structures is 
very low.

*Bigger nuclei contain more protons so to decrease the electrostatic repulsion there is 
forced the transition from 4p4n to 3p5n.
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*The two bases in the 4p4n cuboid and one in 3p5n, in the plane of the squares behave as 
the free alpha particle (its binding energy is Eb,alpha = 28.30 MeV), so the binding energy per 
nucleon that follows from the nuclear strong and electromagnetic interactions is Ealpha = 
7.0746 MeV/nucleon [2].

*The nucleons in pn pair, when placed on the same shell [2], interact strongly and 
electromagnetically because the spins of the nucleons are perpendicular to the shell. On the 
other hand, the nucleons in pn pair, when placed on different shells, interact due to the 
nuclear weak interactions because their spins lie on the same direction.

*Consider the nuclear weak interactions. The nuclear weak coupling constant, w(p) = 
0.0187229, is defined as follows

w(p) = Gw Y2 / (c h) , (1)

where Gw is an analog to the gravitational constant, and Y is the mass of the spacetime 
condensate in the centre of the core of baryons that is responsible for the nuclear weak 
interactions [2].

When the nucleons are polarized (their spins lie on the same direction) then both kinetic 
and potential energies of exchanged the spacetime condensates Y transform into the binding 
energy. Then the weak binding mass per pn pair is defined as follows

mb,pn = (w(p) h / c) (1 / R) = 6.5861·10–45 / R [kg] per pn pair . (2)

Formula (2) is valid for polarized nucleons in direction of their spin. Formula for 
unpolarized nucleons is derived in [2] (see Section C2 in [2]).

From (2), for the distance between the nucleons in a pn pair equal to A (in direction of the 
nucleon spins), we have that the binding energy is

Eb,pn-weak,A = 5.2972 MeV per pn , (3)

whereas for A+B is

Eb,pn-weak,A+B = 3.0806 MeV per pn . (4)

*Here we show that when we take into account the nuclear weak interactions in the 
direction of the nucleon spin in the 8-nucleon cuboids and the proton magnetic and electric 
polarizability radii then the theory of the binding energy is much simpler and leads to correct 
results.

*Consider the 4p4n cuboid (or the (2p2n)bound squares bound with other structures via the 
four nuclear weak interactions in directions of the polarized spins of the 4 nucleons) – see 
Fig.2.

Assume that the height of the 4p4n cuboid that follows from the nuclear weak interactions 
is A – it is the equatorial radius of the core of the nucleons but also the proton magnetic 
polarizability radius [5]. Due to the surface tension of the virtual weak field, such virtual field 
has spherical symmetry. Then the total binding energy for the 4p4n is
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E4p4n,total = 2 Eb,alpha + 4 Eb,pn-weak,A = 77.79 MeV , (5)

whereas for the (2p2n)bound square is

E2p2n(bound),total = E4p4n,total / 2 = 38.90 MeV , (6)

so per one nucleon we obtain

E4p4n = E4p4n,total / 8 = E2p2n(bound),total / 4 = 9.72 MeV/nucleon . (7)

*Consider the 3p5n cuboid – see Fig.3.
From Fig.3, due to the practically unbound one unpolarized neutron (it is surrounded by 

three neutrons), follows that in some approximation there are 6 interactions with the binding 
energy equal to Ealpha and only 3 nuclear weak interactions. It causes that the interactions 
between the bases of the 3p5n cuboid are weakened so distance between them should be 
larger than in 4p4n.

The next larger quantized distance in nucleons is A + B [2] that is also the proton 
electric polarizability radius [5], so we assume that it is the height of the 3p5n cuboid.

Then the total binding energy for the 3p5n is

E3p5n,total = 6 Ealpha + 3 Eb,pn-weak,A+B = 51.69 MeV ,                (8)

so per one nucleon we obtain

E3p5n = E3p5n,total / 8 = 6.46 MeV/nucleon . (9)
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*We know that from the supersymmetry in nuclear structure follows that energy of 
interactions of our cuboids, due to the saturation, is low in comparison with their internal 
binding energy. It suggests that distance between them should be the radius of the last orbit 
for the nuclear strong interactions (A+4B) or the quantized photonic radius of the protons 
(A+8B). The mean distance is A + 6B = 3.7085 fm. It leads to conclusion that our cuboids 
occupy cubes with the side equal to (A+6B). On the assumption that the mean mass of 
nucleon in atomic nucleus is about 931 MeV, we obtain that the mean mass density of 
nuclear matter in nuclei in which dominate the cuboids, i.e. for Ai ≥ 56, should be an 
invariant and it is

(Mass-density)Mass-number≥56 = (8·931 MeV) / (A + 6 B)3 = 2.60·1017 kg/m3 . (10)

This value is consistent with experimental data so it additionally validates our model.

Emphasize that ranges of the virtual field of nucleons in atomic nuclei are different
but the global/effective mass density of the heavier nuclei should be an invariant!

*SST shows that the cores of baryons are indestructible – they can be destroyed only in 
annihilations of the core-anticore pairs. It is the reason that the SST nuclear plasma composed 
of the baryonic cores is unstable. The baryonic core, in the SST nuclear plasma composed of 
the baryonic cores packed to maximum, occupies a cuboid with the sizes equal to 2A, 2A
and 2A/3 [2]. On the other hand, mass of the charged baryonic core is about 0.7274 GeV [2] 
so the SST lower limit for energy density needed to create the plasma composed of the 
nucleon cores is

(Mass-density)Lower-limit,plasma = 0.7274 GeV / (2A · 2A · 2A/3) = 0.80 GeV/fm3 .(11)

The needed temperature, because of the nuclear virtual field composed of the virtual 
W(+),d=4W(–),d=4 pairs, is T = W(+–),d=4 ≈ 162.01257 MeV [5].
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These two theoretical values (density and temperature) also are consistent with 
experimental data so it additionally validates our model concerning the nuclear binding 
energies.

*In Fig.4, we present for selected atomic nuclei the dependence of the ratio of the number 
of the 3p5d cuboids to the number of the alpha particles bound with other nucleons due to the 
nuclear weak interactions (see Table C3 in [2]) on the mass-number.

2. Binding energies of selected nuclei with Ai ≥ 56
The 26Fe56 consists of 5 the 4p4n cuboids and of 2 the 3p5n cuboids (i.e. there are 26 

protons and 30 neutrons and the number ratio of the cuboids is 0.4) so for the binding energy 
per nucleon we obtain

EFe = (5 E4p4n,total + 2 E3p5n,total) / 56 = 8.79 MeV/nucleon . (12)

The 103Lr256 consists of 7 the 4p4n cuboids and of 25 the 3p5n cuboids (i.e. there are 103 
protons and 153 neutrons and the number ratio of the cuboids is ~3.6, i.e. about 9 times 
higher than in Fe), so for the binding energy per nucleon we obtain

ELr = (7 E4p4n,total + 25 E3p5n,total) / 256 = 7.17 MeV/nucleon . (13)

Our results are consistent with experimental data.

3. Binding energies of selected nuclei with 8 ≤ Ai ≤ 56
In such nuclei, there can be the almost free alpha particles 2He4 (Eb,alpha = 28.30 MeV) or 

the (2p2n)bound structures (E2p2n(bound),total = 38.90 MeV) so the mean is 33.60 MeV.

When the mass-number increases from 8 to 56 then there is more and more the bound 
(2p2n)bound structures instead the almost free 2p2n structures (it is very important to 
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understand the size of the EMC effect), so the binding energy per nucleon increases from 
about 7 MeV/nucleon to 8.79 MeV/nucleon.

Calculate the binding energy per nucleon for a mean nucleus, for example, for 16S32 (there 
should be 4 the almost free alpha particles and 4 the bound (2p2n)bound structures)

ES = (4 Eb,alpha + 4 E2p2n(bound),total) / 32 = 8.40 MeV/nucleon . (14)

It is consistent with experimental data.

4. Binding energies of selected light nuclei
In [2], we calculated the binding energies per nucleon in deuteron (~2.198 MeV per the 

pn pair) and in the free alpha particle (~7.07046 MeV/nucleon).
It is surprising that we obtain also the correct value for the binding energy of the deuteron 

1H2 with polarized spins of the nucleons on the assumption that there is the nuclear weak 
interaction on distance A+B* = 1.66674 fm, where B* = 0.969294 fm is the second 
solution for the distance between the second and first the Titius-Bode orbits for the nuclear 
strong interactions (see Section 2.7 in [2]). Formula (2) gives

Edeuteron = 2.2166 MeV . (15)

In 1H3 and 2He3 there are only the two nuclear weak interactions of the three polarized 
nucleons (all spins are on the same direction). On the assumption that one interaction has the 
range A whereas the second one has the range A+B, we obtain

E (for both 1H3 and 2He3) = (Eb,pn-weak,A + Eb,pn-weak,A+B) / 3 = 2.79 MeV/nucleon . (16)

For 3Li7 we have

3Li7 ≡ 2He4 + 1H3 , (17)

so we have

E (3Li7) = (Eb,alpha + 3 · 2.79 MeV/nucleon) / 7 = 5.24 MeV/nucleon . (18)

5. The magic atomic nuclei
In the magic nuclei, the concentric shells are fully filled so the global structure is more 

ordered – it causes that the interactions between the cuboids are a little stronger so binding 
energy per nucleon in the magic nuclei is a little higher.

6. The EMC effect
The Bjorken x we define as follows

x = (Mi / N)2 , (19)

where Mi
2 represents the squared mass/energy of the dominating particle/object in the virtual 

field of nucleons created due to DIS, and N = (p + n) / 2 is the mean mass of nucleon.
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Due to DIS, there are produced some characteristic virtual objects with the masses ±Mi. 
Emphasize that a virtual object consists of a particle with positive mass and with a “hole” in 
the SST absolute spacetime with negative mass, so in our model appears the squared mass 
Mi

2. Due to such a resonance, i.e. DIS  ±Mi, number density of virtual particles in each 
nucleon increases the same. It forces the oscillations of the nucleon virtual field that causes 
emission of virtual energy, so range/radius of the virtual field is reduced. Next, for increasing 
Q2, because in DIS of nuclei the absorbed energy by nucleus is higher in nuclei with higher 
mean inertia, frequency of the oscillations increases and is higher in nuclei with higher mean 
inertia, so range of the virtual field in nucleons in such nuclei decreases faster, so the slope for 
cross section is steeper (see Figures 5, 6 and 7). For the Mi two times higher than the 
resonance energy, i.e. for 2Mi, we should observe a second increase in the number density of 
the virtual particles.

Calculate the lower and upper limits for the Bjorken x for the EMC effect on the 
assumption that in a nucleon, mass of the virtual particles with the positive mass is Mi,resonance
= Y. From (19) we have

0.204 ≤ x ≤ 0.816 ,             (20)

i.e. xlower = 0.204 and xupper = 0.816 .
Emphasize that the anomalous region defined by the interval (20) is the result of the

additional virtual nuclear field that forces its oscillations.

Reduction of the volume of the virtual nucleon weak field per nucleon in deep inelastic 
scattering is more effective in nuclei with higher mean inertia concerning the different 6
stable structures (i.e. 4p4n, 3p5n, 3p4n, 2p2n, 1p1n, N), not rather in nuclei with higher 
global/effective densities. Inertia of such structures is directly proportional to number of 
nucleons they consist of. Then the mean inertia of a nucleus depends on number 
densities of the stable structures – there are the 8-, 7-, 4-, 2-nucleon structures and the 
almost free nucleons.

For higher local inertia, the incoming energy (due to DIS) is absorbed to a greater extent
therefore the higher frequency of the virtual-field oscillations reduces the range of the nucleon 
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virtual field more effectively. This means that in the anomalous region, the EMC ratio (i.e. 
σA/σo, where σA is the cross section of nucleon in nucleus with the mass-number equal to 
Aj, and σo is the cross section of the virtual field of free proton) decreases with increasing the
Bjorken x – see Fig.6.

It also means that due to the described mechanism, the cross section of a nucleon in the 
EMC region should decrease with increasing Bjorken x but for a nucleon in nucleus with 
higher mean inertia, the slope should be steeper (see Fig.7).

Here the cross section is defined as

σ = π r2 , (21)

where r denotes radius of a virtual field.
Calculate the EMC ratio for a nucleon in which the nucleon virtual field absorbs or emits a 

virtual mass/energy equal to ΔMvirtual. We assume that the virtual field, due to the surface 
tension, has spherical symmetry. Then mass is directly proportional to r3, so from (21) we 
obtain

REMC = σA / σo = (RA / Ro)2 = {[(Mvirtual ± ΔMvirtual) / Mvirtual]1/3}2 =
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= (1 ± ΔMvirtual / Mvirtual)2/3 . (22)

On the other hand, the Bjorken x has following changed value

x  xnew = [(Mi ± ΔMvirtual) / N]2 . (23)

In free nucleon, the virtual nuclear weak field is characteristic for the interior of the core of 
baryons so the radius/range is equal to Ro = A. The weak cross section of the free proton is 
defined as follows

σo = π A2 = 1.528 fm2 . (24)

Notice that the EMC ratio for free nucleon is

REMC,o = σo / σo = 1 .                     (25)

Due to DIS, we should add to the free-nucleon virtual field its electroweak mass Mew that 
has the maximal value at x = 0.204

ΔMvirtual,x=0.204 = Mew = (w(p) + em) N = 24.4 MeV ,        (26)

where em is the fine-structure constant [2].
Here the initial virtual mass at the Bjorken x = (Y / N)2 = 0.204 is Mvirtual = Y (it is 

also mass of the additional virtual field in x = 816 (i.e. 2Y – Y = Y)), so from formula (22) 
we obtain

REMC,x=0.204 = (1 + ΔMvirtual,x=0.204 / Y)2/3 = 1.038 .   (27)

We use this value to scaling the EMC effect. It is the enhancement above the REMC,o = 1
around the Bjorken xlower = 0.204.

Calculate the maximal change in virtual field for the nuclear structures with maximal mean 
inertia, i.e. for the 8-nucleon cuboids (i.e. 4p4n and 3p5n).

In such structures, a nucleon can emits the virtual fundamental gluon loop (FGL) in the 
plane of its plane, say in direction of the x-axis or y-axis, or the virtual neutral pion in 
direction of the nucleon spin, i.e. in direction of the z-axis (the neutral pion is the 
pseudoscalar so such emission conserves the nucleon spin). Then the mean maximal virtual 
energy emitted per nucleon is

Mmean,maximal = (2 mFGL + πo) / 3 = 90 MeV .   (28)

Such emission decreases range of the additional nucleon virtual field (it is Y at the Bjorken 
xupper = 0.816) so also volume. Then the EMC ratio decreases to its lowest value. From (22) 
we have

REMC,8-nucleons = (1 – Mmean,maximal / Y)2/3 = 0.853 .   (29)

Such a phenomenon causes that the xupper decreases to (see formula (23))
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xupper  xnew = [(2Y – Mmean,maximal) / N]2 = 0.652 . (30)

The maximal EMC slope is

(dREMC / dx)8-nucleons = (REMC,8 – REMC,x=0.204) / (xnew – xlower) =

= (0.853 – 1.038) / 0.448 = – 0.413 . (31)

Due to the different inertias of the nuclear structures, the slope of the EMC effect should be 
lower for nuclear structures containing less the nucleons. We assume that the relation is 
directly proportional, so we obtain

(dREMC / dx)7-nucleons = 7 (dREMC / dx)8-nucleons / 8 = – 0.361 .        (32)

(dREMC / dx)4-nucleons = 4 (dREMC / dx)8-nucleons / 8 = – 0.207 . (33)

(dREMC / dx)2-nucleons = 2 (dREMC / dx)8-nucleons / 8 = – 0.103 . (34)

We see that the slope for deuteron is –0.103 (it is consistent with experimental data [6]) and 
for the alpha particle is –0.207 (it is consistent with experimental data as well [3]).

For nuclei containing different structures we have

(dREMC / dx)A = Σ nk (dREMC / dx)k-nucleons / Ai , (35)

where nk denotes number of nucleons in structures containing k nucleons.

Table 1 Slopes of the EMC effect for selected nuclei from SST
Z symbol Ai 4p4n 3p5n 3p4n 2p2n 1p1n 1N Slope of the 

EMC effect
1 H 1 1 0
1 H 2, D 1 – 0.103
1 H 3, 2 He 3 1 1 – 0.069
2 He 4 1 – 0.207
3 Li 7 1 1 1 – 0.148
4 Be 9 2 1 – 0.184
6 C 12 1 1

3
– 0.344
– 0.207
mean –0.276

16 S 32 2 4 – 0.310
20 Ca 40 4 2 – 0.372
20 Ca 48 4 4 – 0.344
26 Fe 56 5 2 – 0.413
50 Sn 120 5 10 – 0.413
102 No 256 6 26 – 0.413

For example, in 9Be, there are two the 2p2n structures and one almost free neutron, so we 
have
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(dREMC / dx)Be9 = 8 (– 0.207) / 9 = – 0.184 . (36)

For nuclei with Ai ≥ 56, we obtain –0.413 so there is some saturation that follows from 
the domination of the 8-nucleon structures.

The selected results we present in Table 1.

We see that the slope of the EMC effect does not depend on the nuclear mass-number 
Ai and for Ai ≥ 56 it is constant, i.e. about –0.413. The EMC slope depends on mean 
inertia of structures a nucleus consists of.

Notice that nucleons in the cuboids and squares in a nucleus are already polarized and their 
interactions are practically saturated (i.e. the cuboids interact sporadically), so a spin 
polarization of the cuboids as a wholes by an external magnetic field should have a low 
influence on the EMC effect.

7. The second plateau and the predicted separated point in Fig.1
In the atomic nuclei (due to DIS), there can be created virtual fields with the masses of the 

hyperons. 
The hyperons are created quickly due to the nuclear strong interactions and decay slowly 

due to the nuclear weak interactions (we do not take into account the neutral sigma hyperon). 
It means that initially the virtual field has cylindrical symmetry. In SST, we showed that the 
state d=2 (i.e. radius = A + 2B = 1.7011 fm) is responsible for the properties of the 
hyperons. It means that the radii of virtual field of all hyperons are: A+2B, A+2B, and the
A+B in direction of the spin, so the virtual weak field is extended to maximum. The mean 
radius is 1.534 fm, so the mean cross section is σ = 7.391 fm2, so the EMC ratio for all 
hyperons is (see formula (24))

REMC,plateau2 = 7.391 fm2 / σo = 4.84 . (37)

On the other hand, the Mi in the definition of the Bjorken x are the masses of the hyperons, 
so we obtain: for the lambda hyperon x = 1.41, for the sigma hyperons x ≈ 1.6, for the ksi 
hyperons x ≈ 1.98, and for the omega hyperon x = 3.2. We can see that there should be a 
plateau from x ≈ 1.4 up to x ≈ 2.0 and the separated point/strong-signal for x = 3.2.

Due to the predicted separated point/strong-signal with REMC,plateau2 = 4.84 and 
Bjorken x = 3.2, we can verify our model.

8. The first plateau in Fig.1
The first plateau is for the non-relativistic real pions created inside nucleons. Emphasize 

that in nucleons, in the state d=1 (the radius is A+B) there is already the relativistic pion.
The positive mass of virtual field is Mi = N + π±,o. The mean radius of virtual field of 
nucleons in heavier nuclei is A+B = 1.19928 fm, so creation of the additional pion causes 
that the mean radius of the virtual field increases to

R = [(N + π±,o) / N]1/3 (A + B) = 1.2551 fm .        (38)
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Such conditions lead to the first plateau extended from Bjorken x = 1.31 up to x = 1.32
with the EMC ratio equal to (there is σ = πR2 = 4.949 fm2)

REMC,plateau1 = 4.949 fm2 / σo = 3.24 . (39)

9. The dip in Fig.1
The minimum in the dip concerns the creation of virtual FGL by real nucleon so Mi = N, 

so the Bjorken x = 1. The radii of the emitted one virtual FGL are: 2A/3, 2A/3, and 0, so 
the mean radius is RFGL,mean = 0.310 fm, so the REMC ratio for the FGL is (there is σ = 
πRFGL,mean

2 = 0.302 fm2)

REMC,FGL = 0.302 fm2 / σo = 0.20 (40)

and it is the minimum for the dip. For higher squared four-momentum Q2, there are produced 
the entangled FGLs so the EMC ratio increases, i.e. the dip at x = 1 fills in.

The emitted real FGLs decrease the nucleon mass so the Bjorken x is lower than x = 1, 
while the not emitted real FGLs increase the Bjorken x, so it is higher than x = 1. Such is the 
origin of the dip in Fig.1.

Calculate the EMC ratio for almost free one real FGL. The FGLs collect at the mean 
distance equal to the electron radius of proton ro(p),e = 0.877 fm [2]. The radius of virtual 
field is

Rleft = [(N – mFGL) / N]1/3 ro(p),e = 0.8554 fm , (41)

so the EMC ratio is (there is σ = πRleft
2 = 2.299 fm2)

REMC,left = 2.299 fm2 / σo = 1.50 (42)

while the Bjorken x is

xleft = [(N – mFGL) / N]2 = 0.86 .            (43)

Such values, i.e. x = 0.86 and REMC = 1.50, are for the left beginning of the dip.
The right side of the dip is for the real FGLs created inside nucleon at the mean distance 

ro(p),e.

10. The shadowing region in Fig.1
The shadowing region is, due to DIS, for created virtual structures that are entangled with 

the virtual nuclear weak field. There appear resonances for masses characteristic for nucleons.
The |ΔEcore| = 14.978 MeV is the binding energy of the core of baryons [2]. It is the 

“hole” in the SST absolute spacetime with the radius equal to the equatorial radius of the core 
of nucleons A. The positive energy from DIS equal to –ΔEcore fills the “hole” but because the 
binding energy must be negative, it forces the oscillations of the virtual field that decreases its 
radius. From (22) we obtain

REMC = (1 – |ΔEcore| / Y)2/3 = 0.976 , (44)
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and from (19) is

x = (|ΔEcore| / N)2 = 0.00026 . (45)

On the other hand, we know that the photoproduction absorption in deuteron starts from the 
Bjorken x ≈ 0.00026. It looks as a resonance.

Calculate the Bjorken x and REMC for the maximal mean energy emitted by the nucleon 
virtual fields (we have Mmean,maximal = 90 MeV – see formula (28))

REMC,minimum = (1 – Mmean,maximal / Y)2/3 = 0.853 .     (46)

x = (Mmean,maximal / N)2 = 0.009 . (47)

Such values should be characteristic for the shadowing region for nucleon in heavy nuclei, 
i.e. the curve should go through such a point.

The oscillations in the shadowing region should quickly disappear with increasing the 
Bjorken x and at x = 0.204 such oscillations disappear. It means that the shadowing region 
is due to the phenomena concerning nucleons, i.e. it does not concern the mean inertias of 
nuclei.

11. The global results
Notice that from (22) follows that for emission of one neutral pion, πo, we have

REMC,pion = (1 – πo / Y)2/3 = 0.7745 .       (48)

We use this value to scaling the magnitude a2.
We define the magnitude of the plateau2 as follows

a2 = REMC (plateau2) / REMC,pion . (49)

For the region with the Bjorken x > 1, the magnitude a2 is a function of the nuclear mass-
number because with increasing the Bjorken x, the range of the nuclear weak field increases 
from A for nucleons to A+2B for hyperons, so cross section of the nuclear virtual field 
increases as well because there increases the REMC (plateau2).

Notice that the A+2B state for hyperons is the ground state above the Schwarzschild 
surface for the nuclear strong interactions [2].

Emphasize also that the mean inertia per nucleon is invariant for Ai ≥ 56, so there is an
asymptotic behaviour of nucleons in such nuclei.

The maximum value for the a2 magnitude is

a2 (maximum, Ai ≥ 56 ) = REMC,plateau2 / REMC,pion = 6.25 .     (50)

The minimum should be for nucleon

a2 (minimum, N) = REMC (plateau2)N / REMC,N = 1 .    (51)
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On the other hand, the slope of the EMC effect, –dREMC/dx, should be zero for proton and 
neutron, and should be the maximum for nucleon in nuclei with Ai ≥ 56

(–dREMC/dx)maximum = (1.038 – 0.853) / (0.652 – 0.204) = 0.413 .       (52)

So with very good approximation we have

0 ≤ –dREMC/dx ≤ 0.413 .                    (53)

Our global results are collected in Fig.9 – they are consistent with experimental data [7].
Our formula for the dependence of the slope of the EMC effect on the a2 magnitude of the 

plateau2 looks as follow

[–dREMC/dx]SST = (a2 – 1) · 0.079 .     (54)

It is consistent with experimental data – in [7], there is 0.079(6).

12. Summary
The shadowing region in Fig.1, due to DIS, is because of the created virtual structures

entangled with the virtual nuclear weak field – there appear resonances for masses 
characteristic for nucleons. The EMC region is due to the oscillations of virtual nuclear fields 
so there is emitted virtual energy (such processes are more intensive in regions with higher 
local inertia) so the EMC ratio decreases with increasing the Bjorken x. The dip is for the 
FGLs-nucleon interactions. The first plateau is for production of the real pions inside nucleon. 
The second plateau and the predicted separated point/strong-signal (so our model can be 
verified) are for production of additional virtual fields with positive masses equal to masses of 
the real hyperons. The consistency of the theoretical SST results with experimental data is 
perfect.

The EMC effect is the response of the virtual nuclear field of nucleon in atomic nucleus on 
deep inelastic scattering.
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Our model for the EMC effect is not a full analogue to the electrons in a condense-matter 
state because the sources of the nuclear strong fields (i.e. the cores of baryons) in nucleons do 
not overlap even partly in the atomic nuclei. So the source of the strong interactions cannot be 
modified. The radius of the core along the axis of rotation is A/3 while the smallest distance 
between the nucleons in atomic nuclei in such direction is A, i.e. it is larger than 2(A/3). On 
the other hand, the equatorial radius of the core is equal to A whereas the smallest distance 
between nucleons in the plane of the equator is (A + 4B)/21/2, i.e. it is larger than 2A.

Our theoretical energies of binding per nucleon for selected atomic nuclei very well reflect 
the experimental curve for all nuclei, so our model of the structure of nuclei and their internal 
interactions can be considered credible, which additionally makes our description of the
generalized EMC effect more plausible.

Within SST, we already described the nuclear interactions via the strong-electromagnetic 
interactions when the height of the cuboids is A+4B (there is E1 ~ s

NN,πem/(A+4B) = 
0.03885 [2]) and when the spin of the nucleons rotates 90 degrees. Here we showed that we 
obtain similar results for stable spin polarization, so involved energy is two times higher, via 
the nuclear weak interactions, when the height of the cuboids is a mean Rweak = 
[(A+B)+A]/2 (there is E2 ~ 2w(p) / Rweak = 0.03948). Such two different quantum states 
should lead to some oscillations of the heavier atomic nuclei. But we claim that in DIS, the 
quantum state described in this paper is the ground state because the nuclear weak interactions 
that are characteristic for the EMC effect can force such change in the structure of nucleons 
(notice that we have E2 ≈ E1 (1 + w(p))).

To fully explain the EMC effect and the nuclear binding energies, we need the atom-
like structure and dynamics of baryons described in the Scale-Symmetric Theory, 
especially the quantized Titius-Bode orbits for the nuclear strong interactions. We 
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cannot do it within the quark model of hadrons. It is the reason that for 40 years the two 
basic problems were a puzzle.

The size of EMC effect depends on the mean inertias of nuclei that depend on number 
densities of the different nuclear structures in a nucleus, not on the global/effective 
densities of nuclei.

SST shows that local inertias for Ai ≥ 56 practically do not depend on Ai because of 
the 8-nucleon cuboids that dominate. It causes that we should observe some saturation 
(an asymptotic behaviour) for such nuclei.

The most surprising fact is that the second plateau and the separated point in Fig.1 concern
the virtual fields of hyperons.

In Fig.11 we show a “mirror” similarity between the shadowing region and the EMC-effect 
region. At the beginning of the first region and at the end of the second region for the nuclei 
with highest mean inertia, there appear the resonances for the additional energy of the virtual 
fields, i.e. the 90 MeV. But at the beginning of the shadowing region there is created virtual
energy not entangled with nucleon while at the end of the EMC-effect region, the positive 
virtual energy is emitted by nucleon so mass of the nucleon decreases.

In our generalized model (graphically presented in Fig.1), there appear the characteristic 
masses concerning the baryons (p, n, masses of hyperons, Y ≈ 424 MeV concerning in SST 
the weak interactions, pions and mFGL concerning the strong interactions and the binding 
energy of the core of baryons ΔEcore). It causes that our generalized model is unique and fully 
consistent with experimental data.

Why does the quark model largely mimic our atom-like structure of nucleons? The answer 
to this fundamental question results from the fact that the description of interactions is based 
on coupling constants, the values of which depend mainly on the masses/energies of the 
sources of the interactions and to a much lesser extend on other quantities. In the quark 
model, we have three relativistic spin-1/2 valence quarks (so we have big problems with 
calculating the nucleon spin) with relativistic masses of about 300 MeV each. On the other 
hand, in our model of nucleons, there are also three main parts with masses around 300, 400 
and 200 MeV, but only one part is a fermion, one is a scalar, and the third part is a 
pseudoscalar. Only the pseudoscalar is a relativistic particle. As a result, the number of 
parameters in our model is about four times smaller than in QCD and the spin calculation
within SST is a formality.
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